1
|
Amtry SM, Campello AC, Tong CL, Puggioni DS, Rondinelli JM, Lee YS, Freedman DE. Chemical Design of Spin Frustration to Realize Topological Spin Glasses. J Am Chem Soc 2024; 146:29040-29052. [PMID: 39382197 DOI: 10.1021/jacs.4c10113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Patterning spins to generate collective behavior is at the core of condensed matter physics. Physicists develop techniques, including the fabrication of magnetic nanostructures and precision layering of materials specifically to engender frustrated lattices. As chemists, we can access such exotic materials through targeted chemical synthesis and create new lattice types by chemical design. Here, we introduce a new approach to induce magnetic frustration on a modified honeycomb lattice through a competition of alternating antiferromagnetic (AFM) and ferromagnetic (FM) nearest-neighbor interactions. By subtly modulating these two types of interactions through facile synthetic modifications, we created two systems: (1) a topological spin glass and (2) a frustrated spin-canted magnet with low-temperature exchange bias. To design this unconventional magnetic lattice, we used a metal-organic framework (MOF) platform, Ni3(pymca)3X3 (NipymcaX where pymca = pyrimidine-2-carboxylato and X = Cl, Br). We isolated two MOFs, NipymcaCl and NipymcaBr, featuring canted Ni2+-based moments. Despite this similarity, differences in the single-ion anisotropies of the Ni2+ spins result in distinct magnetic properties for each material. NipymcaCl is a topological spin glass, while NipymcaBr is a rare frustrated magnet with low-temperature exchange bias. Density functional theory calculations and Monte Carlo simulations on the NipymcaX lattice support the presence of magnetic frustration as a result of alternating AFM and FM interactions. Our calculations enabled us to determine the ground-state spin configuration and the distribution of spin-spin correlations relative to paradigmatic kagomé and triangular lattices. This modified honeycomb lattice is similar to the electronic Kekulé-O phase in graphene and provides a highly tunable platform to realize unconventional spin physics.
Collapse
Affiliation(s)
- Stephanie M Amtry
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Arthur C Campello
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Christopher L Tong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Danilo S Puggioni
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Young S Lee
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Danna E Freedman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Zhou H, Auerbach N, Uzan M, Zhou Y, Banu N, Zhi W, Huber ME, Watanabe K, Taniguchi T, Myasoedov Y, Yan B, Zeldov E. Imaging quantum oscillations and millitesla pseudomagnetic fields in graphene. Nature 2023; 624:275-281. [PMID: 37993718 PMCID: PMC10719110 DOI: 10.1038/s41586-023-06763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
The exceptional control of the electronic energy bands in atomically thin quantum materials has led to the discovery of several emergent phenomena1. However, at present there is no versatile method for mapping the local band structure in advanced two-dimensional materials devices in which the active layer is commonly embedded in the insulating layers and metallic gates. Using a scanning superconducting quantum interference device, here we image the de Haas-van Alphen quantum oscillations in a model system, the Bernal-stacked trilayer graphene with dual gates, which shows several highly tunable bands2-4. By resolving thermodynamic quantum oscillations spanning more than 100 Landau levels in low magnetic fields, we reconstruct the band structure and its evolution with the displacement field with excellent precision and nanoscale spatial resolution. Moreover, by developing Landau-level interferometry, we show shear-strain-induced pseudomagnetic fields and map their spatial dependence. In contrast to artificially induced large strain, which leads to pseudomagnetic fields of hundreds of tesla5-7, we detect naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree, two orders of magnitude lower than the typical angle disorder in twisted bilayer graphene8-11. This ability to resolve the local band structure and strain at the nanoscale level enables the characterization and use of tunable band engineering in practical van der Waals devices.
Collapse
Affiliation(s)
- Haibiao Zhou
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Auerbach
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Matan Uzan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yaozhang Zhou
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Nasrin Banu
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Weifeng Zhi
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Martin E Huber
- Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, CO, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Yuri Myasoedov
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Zeldov
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Naumis GG, Herrera SA, Poudel SP, Nakamura H, Barraza-Lopez S. Mechanical, electronic, optical, piezoelectric and ferroic properties of strained graphene and other strained monolayers and multilayers: an update. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 87:016502. [PMID: 37879327 DOI: 10.1088/1361-6633/ad06db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
This is an update of a previous review (Naumiset al2017Rep. Prog. Phys.80096501). Experimental and theoretical advances for straining graphene and other metallic, insulating, ferroelectric, ferroelastic, ferromagnetic and multiferroic 2D materials were considered. We surveyed (i) methods to induce valley and sublattice polarisation (P) in graphene, (ii) time-dependent strain and its impact on graphene's electronic properties, (iii) the role of local and global strain on superconductivity and other highly correlated and/or topological phases of graphene, (iv) inducing polarisationPon hexagonal boron nitride monolayers via strain, (v) modifying the optoelectronic properties of transition metal dichalcogenide monolayers through strain, (vi) ferroic 2D materials with intrinsic elastic (σ), electric (P) and magnetic (M) polarisation under strain, as well as incipient 2D multiferroics and (vii) moiré bilayers exhibiting flat electronic bands and exotic quantum phase diagrams, and other bilayer or few-layer systems exhibiting ferroic orders tunable by rotations and shear strain. The update features the experimental realisations of a tunable two-dimensional Quantum Spin Hall effect in germanene, of elemental 2D ferroelectric bismuth, and 2D multiferroic NiI2. The document was structured for a discussion of effects taking place in monolayers first, followed by discussions concerning bilayers and few-layers, and it represents an up-to-date overview of exciting and newest developments on the fast-paced field of 2D materials.
Collapse
Affiliation(s)
- Gerardo G Naumis
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 20-364, CDMX, 01000, Mexico
| | - Saúl A Herrera
- Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 20-364, CDMX, 01000, Mexico
| | - Shiva P Poudel
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States of America
- MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Hiro Nakamura
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States of America
- MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, AR 72701, United States of America
| | - Salvador Barraza-Lopez
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States of America
- MonArk NSF Quantum Foundry, University of Arkansas, Fayetteville, AR 72701, United States of America
| |
Collapse
|
4
|
Zhang MH, Ren YN, Zheng Q, Zhou XF, He L. Observation of Robust and Long-Ranged Superperiodicity of Electronic Density Induced by Intervalley Scattering in Graphene/Transition Metal Dichalcogenide Heterostructures. NANO LETTERS 2023; 23:2630-2635. [PMID: 37011340 DOI: 10.1021/acs.nanolett.2c04957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Two-dimensional (2D) h-BN and transition metal dichalcogenides (TMDs) are widely used as substrates of graphene because they are insulating, atomically flat, and without dangling bonds. Usually, it is believed that such insulating substrates will not affect the electronic properties of graphene, especially when the moiré pattern generated between them is quite small. Here, we present a systematic study of the electronic properties of graphene/TMD heterostructures with the period of the moiré pattern <1 nm, and our results reveal an unexpected sensitivity of electronic properties in graphene to the 2D insulating substrates. We demonstrate that there is a robust and long-ranged superperiodicity of electronic density in graphene, which arises from the scattering of electrons between the two valleys of graphene in the graphene/TMD heterostructures. By using scanning tunneling microscope and spectroscopy, three distinct atomic-scale patterns of the electronic density are directly imaged in every graphene/TMD heterostructure.
Collapse
Affiliation(s)
- Mo-Han Zhang
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ya-Ning Ren
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Qi Zheng
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiao-Feng Zhou
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lin He
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
5
|
Rut G, Fidrysiak M, Goc-Jagło D, Rycerz A. Mott Transition in the Hubbard Model on Anisotropic Honeycomb Lattice with Implications for Strained Graphene: Gutzwiller Variational Study. Int J Mol Sci 2023; 24:1509. [PMID: 36675022 PMCID: PMC9866234 DOI: 10.3390/ijms24021509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The modification of interatomic distances due to high pressure leads to exotic phenomena, including metallicity, superconductivity and magnetism, observed in materials not showing such properties in normal conditions. In two-dimensional crystals, such as graphene, atomic bond lengths can be modified by more than 10 percent by applying in-plane strain, i.e., without generating high pressure in the bulk. In this work, we study the strain-induced Mott transition on a honeycomb lattice by using computationally inexpensive techniques, including the Gutzwiller Wave Function (GWF) and different variants of Gutzwiller Approximation (GA), obtaining the lower and upper bounds for the critical Hubbard repulsion (U) of electrons. For uniaxial strain in the armchair direction, the band gap is absent, and electron correlations play a dominant role. A significant reduction in the critical Hubbard U is predicted. Model considerations are mapped onto the tight-binding Hamiltonian for monolayer graphene by the auxiliary Su-Schrieffer-Heeger model for acoustic phonons, assuming zero stress in the direction perpendicular to the strain applied. Our results suggest that graphene, although staying in the semimetallic phase even for extremely high uniaxial strains, may show measurable signatures of electron correlations, such as the band narrowing and the reduction in double occupancies.
Collapse
Affiliation(s)
- Grzegorz Rut
- Institute for Theoretical Physics, Jagiellonian University, Łojasiewicza 11, PL-30348 Kraków, Poland
- Verisk Analytics Sp. z o.o., Rakowicka 7, PL–31511 Kraków, Poland
| | - Maciej Fidrysiak
- Institute for Theoretical Physics, Jagiellonian University, Łojasiewicza 11, PL-30348 Kraków, Poland
| | - Danuta Goc-Jagło
- Institute for Theoretical Physics, Jagiellonian University, Łojasiewicza 11, PL-30348 Kraków, Poland
| | - Adam Rycerz
- Institute for Theoretical Physics, Jagiellonian University, Łojasiewicza 11, PL-30348 Kraków, Poland
| |
Collapse
|
6
|
Hurdax P, Kern CS, Boné TG, Haags A, Hollerer M, Egger L, Yang X, Kirschner H, Gottwald A, Richter M, Bocquet F, Soubatch S, Koller G, Tautz FS, Sterrer M, Puschnig P, Ramsey MG. Large Distortion of Fused Aromatics on Dielectric Interlayers Quantified by Photoemission Orbital Tomography. ACS NANO 2022; 16:17435-17443. [PMID: 36239301 PMCID: PMC9620409 DOI: 10.1021/acsnano.2c08631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as next-generation organic semiconducting materials for nanoelectronics and optoelectronics due to their tunable characteristics, including charge-carrier mobility and optical absorption. Nonplanarity can be an additional parameter to customize their electronic and optical properties without changing the aromatic core. In this work, we report a combined experimental and theoretical study in which we directly observe large, geometry-induced modifications in the frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric interlayer on a metallic substrate. Experimentally, we employ angle-resolved photoemission experiments, interpreted in the framework of the photoemission orbital tomography technique. We demonstrate its sensitivity to detect geometrical bends in adsorbed molecules and highlight the role of the photon energy used in experiment for detecting such geometrical distortions. Theoretically, we conduct density functional calculations to determine the geometric and electronic structure of the adsorbed molecule and simulate the photoemission angular distribution patterns. While we found an overall good agreement between experimental and theoretical data, our results also unveil limitations in current van der Waals corrected density functional approaches for such organic/dielectric interfaces. Hence, photoemission orbital tomography provides a vital experimental benchmark for such systems. By comparison with the state of the same molecule on a metallic substrate, we also offer an explanation why the adsorption on the dielectric induces such large bends in the molecule.
Collapse
Affiliation(s)
- Philipp Hurdax
- Institute
of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010Graz, Austria
| | - Christian S. Kern
- Institute
of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010Graz, Austria
| | - Thomas Georg Boné
- Institute
of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010Graz, Austria
| | - Anja Haags
- Peter
Grünberg Institute (PGI-3), Forschungszentrum
Jülich, 52425Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals
of Future Information Technology, 52425Jülich, Germany
- Experimentalphysik
IV A, RWTH Aachen University, 52074Aachen, Germany
| | - Michael Hollerer
- Institute
of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010Graz, Austria
| | - Larissa Egger
- Institute
of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010Graz, Austria
| | - Xiaosheng Yang
- Peter
Grünberg Institute (PGI-3), Forschungszentrum
Jülich, 52425Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals
of Future Information Technology, 52425Jülich, Germany
- Experimentalphysik
IV A, RWTH Aachen University, 52074Aachen, Germany
| | - Hans Kirschner
- Physikalisch-Technische
Bundesanstalt (PTB), 10587Berlin, Germany
| | | | - Mathias Richter
- Physikalisch-Technische
Bundesanstalt (PTB), 10587Berlin, Germany
| | - François
C. Bocquet
- Peter
Grünberg Institute (PGI-3), Forschungszentrum
Jülich, 52425Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals
of Future Information Technology, 52425Jülich, Germany
| | - Serguei Soubatch
- Peter
Grünberg Institute (PGI-3), Forschungszentrum
Jülich, 52425Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals
of Future Information Technology, 52425Jülich, Germany
| | - Georg Koller
- Institute
of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010Graz, Austria
| | - Frank Stefan Tautz
- Peter
Grünberg Institute (PGI-3), Forschungszentrum
Jülich, 52425Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals
of Future Information Technology, 52425Jülich, Germany
- Experimentalphysik
IV A, RWTH Aachen University, 52074Aachen, Germany
| | - Martin Sterrer
- Institute
of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010Graz, Austria
| | - Peter Puschnig
- Institute
of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010Graz, Austria
| | - Michael G. Ramsey
- Institute
of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010Graz, Austria
| |
Collapse
|
7
|
Andrade E, Naumis GG, Carrillo-Bastos R. Electronic spectrum of Kekulé patterned graphene considering second neighbor-interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:225301. [PMID: 33730699 DOI: 10.1088/1361-648x/abef9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The effects of second-neighbor interactions in Kekulé-Y patterned graphene electronic properties are studied starting from a tight-binding Hamiltonian. Thereafter, a low-energy effective Hamiltonian is obtained by projecting the high energy bands at the Γ point into the subspace defined by the Kekulé wave vector. The spectrum of the low energy Hamiltonian is in excellent agreement with the one obtained from a numerical diagonalization of the full tight-binding Hamiltonian. The main effect of the second-neighbour interaction is that a set of bands gains an effective mass and a shift in energy, thus lifting the degeneracy of the conduction bands at the Dirac point. This band structure is akin to a 'pseudo spin-one Dirac cone', a result expected for honeycomb lattices with a distinction between one third of the atoms in one sublattice. Finally, we present a study of Kekulé patterned graphene nanoribbons. This shows that the previous effects are enhanced as the width decreases. Moreover, edge states become dispersive, as expected due to second neighbors interaction, but here the Kek-Y bond texture results in an hybridization of both edge states. The present study shows the importance of second neighbors in realistic models of Kekulé patterned graphene, specially at surfaces.
Collapse
Affiliation(s)
- Elías Andrade
- Departamento de Sistemas Complejos, Instituto de Fisica, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 Ciudad de México, México
| | - Gerardo G Naumis
- Departamento de Sistemas Complejos, Instituto de Fisica, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 Ciudad de México, México
| | - R Carrillo-Bastos
- Facultad de Ciencias, Universidad Autónoma de Baja California, Apartado Postal 1880, 22800 Ensenada, Baja California, México
| |
Collapse
|