1
|
Li J, Wrzesińska-Lashkova A, Deconinck M, Göbel M, Vaynzof Y, Lesnyak V, Eychmüller A. Facile and Scalable Colloidal Synthesis of Transition Metal Dichalcogenide Nanoparticles with High-Performance Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36315-36321. [PMID: 38968249 DOI: 10.1021/acsami.4c04968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Transition metal dichalcogenides (TMDs) have garnered significant attention as efficient electrocatalysts for the hydrogen evolution reaction (HER) due to their high activity, stability, and cost-effectiveness. However, the development of a convenient and economical approach for large-scale HER applications remains a persistent challenge. In this study, we present the successful synthesis of TMD nanoparticles (including MoS2, RuS2, ReS2, MoSe2, RuSe2, and ReSe2) using a general colloidal method at room temperature. Notably, the ReSe2 nanoparticles synthesized in this study exhibit superior HER performance compared with previously reported nanostructured TMDs. Importantly, the synthesis of these TMD nanoparticles can readily be scaled up to gram quantities while preserving their exceptional HER performance. These findings highlight the potential of colloidal synthesis as a versatile and scalable approach for producing TMD nanomaterials with outstanding electrocatalytic properties for water splitting.
Collapse
Affiliation(s)
- Jing Li
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Angelika Wrzesińska-Lashkova
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
- Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Marielle Deconinck
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
- Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Markus Göbel
- Electrochemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Yana Vaynzof
- Chair for Emerging Electronic Technologies, TU Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
- Leibniz-Institute for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Vladimir Lesnyak
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | | |
Collapse
|
2
|
Pan M, Cui X, Jing Q, Duan H, Ouyang F, Wu R. Single Transition-Metal Atom Anchored on a Rhenium Disulfide Monolayer: An Efficient Bifunctional Electrocatalyst for the Oxygen Evolution and Oxygen Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308416. [PMID: 38361226 DOI: 10.1002/smll.202308416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Developing efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) bifunctional electrocatalysts is attractive for rechargeable metal-air batteries. Meanwhile, single metal atoms embedded in 2D layered transition metal chalcogenides (TMDs) have become a very promising catalyst. Recently, many attentions have been paid to the 2D ReS2 electrocatalyst due to its unique distorted octahedral 1T' crystal structure and thickness-independent electronic properties. Here, the catalytic activity of different transition metal (TM) atoms embedded in ReS2 using the density functional theory is investigated. The results indicate that TM@ReS2 exhibits outstanding thermal stability, good electrical conductivity, and electron transfer for electrochemical reactions. And the Ir@ReS2 and Pd@ReS2 can be used as OER/ORR bifunctional electrocatalysts with a lower overpotential for OER (ηOER) of 0.44 V and overpotentials for ORR (ηORR) of 0.26 V and 0.27 V, respectively. The excellent catalytic activity is attributed to the optimal adsorption strength for oxygen intermediates coming from the effective modulation of the electronic structure of ReS2 after Ir/Pd doping. The results can help to deeply understand the catalytic activity of TM@ReS2 and develop novel and highly efficient OER/ORR electrocatalysts.
Collapse
Affiliation(s)
- Meiling Pan
- Xinjiang Key Laboratory of Solid State Physics and Devices & School of Physical Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, China
| | - Xiuhua Cui
- Xinjiang Key Laboratory of Solid State Physics and Devices & School of Physical Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, China
| | - Qun Jing
- Xinjiang Key Laboratory of Solid State Physics and Devices & School of Physical Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, China
- School of Physics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, China
| | - Haiming Duan
- Xinjiang Key Laboratory of Solid State Physics and Devices & School of Physical Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, China
| | - Fangping Ouyang
- Xinjiang Key Laboratory of Solid State Physics and Devices & School of Physical Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, China
- School of Physics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, China
| | - Rong Wu
- Xinjiang Key Laboratory of Solid State Physics and Devices & School of Physical Science and Technology, Xinjiang University, 777 Huarui Street, Urumqi, 830017, China
| |
Collapse
|
3
|
Li J, Shi Y, Wang J, Liu Q, Luan L, Li Q, Cao Q, Zhang T, Sun H. Cobalt-doped tin disulfide catalysts for high-capacity lithium-air batteries with high lifetime. Phys Chem Chem Phys 2023; 25:26885-26893. [PMID: 37782482 DOI: 10.1039/d3cp02474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual electrolyte lithium-air batteries have received widespread attention for their ultra-high energy density. However, the low internal redox efficiency of these batteries results in a relatively short operating life. SnS2 is widely used in Li-S batteries, Li-ion batteries, photocatalysis, and other fields due to the high discharge capacity in batteries. However, SnS2 suffers from low electrical conductivity and slow redox kinetics. In this study, Co-doped SnS2 is prepared by hydrothermal method for application in dual-electrolyte lithium-air batteries to study its electrochemical performance and its catalytic reaction process by DFT theory. Conductivity tests show that the Co doping enhances the electrical conductivity of the material and high transmission electron microscopy (HRTEM) results demonstrate that the Co doping of SnS2 increases the grain plane spacing and the material indicates that defects are created on the surface of the material, which is more beneficial to the electrochemical performance of the cell. Co-doped SnS2 exhibits excellent good cycling stability and high discharge capacity in a dual electrolyte lithium-air battery, maintaining a 0.7 V overpotential for 120 h at a current density of 0.1 mA cm-2, with a cell life of over 500 h and an initial discharge capacity showing excellent results up to 16 065 mA h g-1. In addition, this study explores the catalytic activity of Co-doped SnS2 based on density flooding theory (DFT). The results show that Co atoms have a synergistic effect with Sn atoms to perturb the lattice parameters. The calculations show that the catalytic activity is enhanced with the increasing of Co doping content and 3Co-Sn exhibits minimal overpotential.
Collapse
Affiliation(s)
- Jie Li
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Yuzhi Shi
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Qianhe Liu
- Human Resources Department, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China
| | - Lihua Luan
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Qiang Li
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Qinghao Cao
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Tianyu Zhang
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Hong Sun
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| |
Collapse
|
4
|
Li Y, Liao H, Wu S, Weng X, Wang Y, Liu L, Qu J, Song J, Ye S, Yu X, Chen Y. ReS 2 Nanoflowers-Assisted Confined Growth of Gold Nanoparticles for Ultrasensitive and Reliable SERS Sensing. Molecules 2023; 28:molecules28114288. [PMID: 37298764 DOI: 10.3390/molecules28114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
ReS2, as a new member of transition metal dichalcogenides (TMDCs), has emerged as a promising substrate for semiconductor surface-enhanced Raman spectroscopy (SERS) due to its unique optoelectronic properties. Nevertheless, the sensitivity of the ReS2 SERS substrate poses a significant challenge to its widespread application in trace detection. In this work, we present a reliable approach for constructing a novel ReS2/AuNPs SERS composite substrate, enabling ultrasensitive detection of trace amounts of organic pesticides. We demonstrate that the porous structures of ReS2 nanoflowers can effectively confine the growth of AuNPs. By precisely controlling the size and distribution of AuNPs, numerous efficient and densely packed "hot spots" were created on the surface of ReS2 nanoflowers. As a result of the synergistic enhancement of the chemical and electromagnetic mechanisms, the ReS2/AuNPs SERS substrate demonstrates high sensitivity, good reproducibility, and superior stability in detecting typical organic dyes such as rhodamine 6G and crystalline violet. The ReS2/AuNPs SERS substrate shows an ultralow detection limit of 10-10 M and a linear detection of organic pesticide molecules within 10-6-10-10 M, which is significantly lower than the EU Environmental Protection Agency regulation standards. The strategy of constructing ReS2/AuNPs composites would contribute to the development of highly sensitive and reliable SERS sensing platforms for food safety monitoring.
Collapse
Affiliation(s)
- Yongping Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Haohui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Shaobing Wu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Shuai Ye
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xiantong Yu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Ramírez AR, Heidari S, Vergara A, Aguilera MV, Preuss P, Camarada MB, Fischer A. Rhenium-Based Electrocatalysts for Water Splitting. ACS MATERIALS AU 2023; 3:177-200. [PMID: 38089137 PMCID: PMC10176616 DOI: 10.1021/acsmaterialsau.2c00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/28/2024]
Abstract
Due to the contamination and global warming problems, it is necessary to search for alternative environmentally friendly energy sources. In this area, hydrogen is a promising alternative. Hydrogen is even more promising, when it is obtained through water electrolysis operated with renewable energy sources. Among the possible devices to perform electrolysis, proton exchange membrane (PEM) electrolyzers appear as the most promising commercial systems for hydrogen production in the coming years. However, their massification is affected by the noble metals used as electrocatalysts in their electrodes, with high commercial value: Pt at the cathode where the hydrogen evolution reaction occurs (HER) and Ru/Ir at the anode where the oxygen evolution reaction (OER) happens. Therefore, to take full advantage of the PEM technology for green H2 production and build up a mature PEM market, it is imperative to search for more abundant, cheaper, and stable catalysts, reaching the highest possible activities at the lowest overpotential with the longest stability under the harsh acidic conditions of a PEM. In the search for new electrocatalysts and considering the predictions of a Trasatti volcano plot, rhenium appears to be a promising candidate for HER in acidic media. At the same time, recent studies provide evidence of its potential as an OER catalyst. However, some of these reports have focused on chemical and photochemical water splitting and have not always considered acidic media. This review summarizes rhenium-based electrocatalysts for water splitting under acidic conditions: i.e., potential candidates as cathode materials. In the various sections, we review the mechanism concepts of electrocatalysis, evaluation methods, and the different rhenium-based materials applied for the HER in acidic media. As rhenium is less common for the OER, we included a section about its use in chemical and photochemical water oxidation and as an electrocatalyst under basic conditions. Finally, concluding remarks and perspectives are given about rhenium for water splitting.
Collapse
Affiliation(s)
- Andrés
M. R. Ramírez
- Centro
de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería
y Tecnología, Universidad Mayor, Camino La Pirámide 5750, 8580745 Huechuraba, Santiago RM Chile
- Universidad
Mayor, Núcleo Química y Bioquímica, Facultad
de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino
La Pirámide 5750, 8580745 Huechuraba, Santiago RM Chile
| | - Sima Heidari
- Inorganic
Functional Materials and Nanomaterials Group, Institute for Inorganic
and Analytical Chemistry, University of
Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- FMF
− Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
- FIT
− Freiburg Center for Interactive Materials and Bioinspired
Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Ana Vergara
- Centro
de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería
y Tecnología, Universidad Mayor, Camino La Pirámide 5750, 8580745 Huechuraba, Santiago RM Chile
| | - Miguel Villicaña Aguilera
- Departamento
de Química Inorgánica, Facultad de Química y
de Farmacia, Pontificia Universidad Católica
de Chile, Santiago 7820436, Chile
| | - Paulo Preuss
- Departamento
de Química Inorgánica, Facultad de Química y
de Farmacia, Pontificia Universidad Católica
de Chile, Santiago 7820436, Chile
| | - María B. Camarada
- Inorganic
Functional Materials and Nanomaterials Group, Institute for Inorganic
and Analytical Chemistry, University of
Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- FIT
− Freiburg Center for Interactive Materials and Bioinspired
Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Departamento
de Química Inorgánica, Facultad de Química y
de Farmacia, Pontificia Universidad Católica
de Chile, Santiago 7820436, Chile
- Centro Investigación
en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Anna Fischer
- Inorganic
Functional Materials and Nanomaterials Group, Institute for Inorganic
and Analytical Chemistry, University of
Freiburg, Albertstraße 21, 79104 Freiburg, Germany
- FMF
− Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
- FIT
− Freiburg Center for Interactive Materials and Bioinspired
Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Cluster
of Excellence livMatS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Qu J, Elgendy A, Cai R, Buckingham MA, Papaderakis AA, de Latour H, Hazeldine K, Whitehead GFS, Alam F, Smith CT, Binks DJ, Walton A, Skelton JM, Dryfe RAW, Haigh SJ, Lewis DJ. A Low-Temperature Synthetic Route Toward a High-Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204488. [PMID: 36951493 DOI: 10.1002/advs.202204488] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/09/2023] [Indexed: 05/18/2023]
Abstract
High-entropy (HE) metal chalcogenides are a class of materials that have great potential in applications such as thermoelectrics and electrocatalysis. Layered 2D transition-metal dichalcogenides (TMDCs) are a sub-class of high entropy metal chalcogenides that have received little attention to date as their preparation currently involves complicated, energy-intensive, or hazardous synthetic steps. To address this, a low-temperature (500 °C) and rapid (1 h) single source precursor approach is successfully adopted to synthesize the hexernary high-entropy metal disulfide (MoWReMnCr)S2 . (MoWReMnCr)S2 powders are characterized by powder X-ray diffraction (pXRD) and Raman spectroscopy, which confirmed that the material is comprised predominantly of a hexagonal phase. The surface oxidation states and elemental compositions are studied by X-ray photoelectron spectroscopy (XPS) whilst the bulk morphology and elemental stoichiometry with spatial distribution is determined by scanning electron microscopy (SEM) with elemental mapping information acquired from energy-dispersive X-ray (EDX) spectroscopy. The bulk, layered material is subsequently exfoliated to ultra-thin, several-layer 2D nanosheets by liquid-phase exfoliation (LPE). The resulting few-layer HE (MoWReMnCr)S2 nanosheets are found to contain a homogeneous elemental distribution of metals at the nanoscale by high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) with EDX mapping. Finally, (MoWReMnCr)S2 is demonstrated as a hydrogen evolution electrocatalyst and compared to 2H-MoS2 synthesized using the molecular precursor approach. (MoWReMnCr)S2 with 20% w/w of high-conductivity carbon black displays a low overpotential of 229 mV in 0.5 M H2 SO4 to reach a current density of 10 mA cm-2 , which is much lower than the overpotential of 362 mV for MoS2 . From density functional theory calculations, it is hypothesised that the enhanced catalytic activity is due to activation of the basal plane upon incorporation of other elements into the 2H-MoS2 structure, in particular, the first row TMs Cr and Mn.
Collapse
Affiliation(s)
- Jie Qu
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Amr Elgendy
- Department of Chemistry and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Rongsheng Cai
- Department of Materials, National Graphene Institute and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Mark A Buckingham
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Athanasios A Papaderakis
- Department of Chemistry and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hugo de Latour
- Department of Materials, National Graphene Institute and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Kerry Hazeldine
- Department of Chemistry and the Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - George F S Whitehead
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Firoz Alam
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Charles T Smith
- Department of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David J Binks
- Department of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alex Walton
- Department of Chemistry and the Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan M Skelton
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Robert A W Dryfe
- Department of Chemistry and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sarah J Haigh
- Department of Materials, National Graphene Institute and Sir Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David J Lewis
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
7
|
Li S, Zhang S, Zhao R. Regulating the electronic and magnetic properties of 1T'-ReS 2 by fabricating nanoribbons and transition-metal doping: a theoretical study. NANOSCALE 2022; 14:8454-8462. [PMID: 35647900 DOI: 10.1039/d2nr00488g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monolayer 1T'-type rhenium disulphide (1T'-ReS2) has promising applications in spintronic devices due to its unique electronic properties induced by inversion loss in the crystal structure. A prerequisite of such applications is introducing magnetism in 1T'-ReS2. Here, we studied the electronic and magnetic properties of zigzag 1T'-ReS2 nanoribbons (1T'-ReS2-NRs) and further tuned their magnetic properties by transition-metal doping. Our results show that 1T'-ReS2-NRs exhibit tunable electronic properties ranging from indirect bandgap to direct bandgap to metallic properties. Among the energy-favoured S-terminated 1T'-ReS2-NRs, only one exhibits robust magnetic properties. The magnetic properties of the other two nanoribbons can be effectively tuned by doping with certain transition metals. Among the configurations of TM-doped 1T'-ReS2-NRs, only those with TM atoms introduced at the edge sites are energy-favoured. The magnetic properties of TM-doped 1T'-ReS2-NRs are mainly contributed by the TM atom, the Re and S atoms at the edges of the nanoribbons. Besides this, the bulk Re and S atoms close to the TM atom also contribute positively to the magnetism and such contributions become weaker as the atoms are farther from the TM atom. These results provide deep insights into the modulations of the electronic and magnetic properties of 1T'-ReS2 at the atomic scale, and thus should pave an effective path for fabricating 2D materials for spintronic devices.
Collapse
Affiliation(s)
- Simei Li
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Henan 454003, China.
| | - Shuqing Zhang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Ruiqi Zhao
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Henan 454003, China.
| |
Collapse
|
8
|
Liu L, Kong M, Xing Y, Wu Z, Chen Y. Atomic Layer Deposition-Made MoS 2-ReS 2 Nanotubes with Cylindrical Wall Heterojunctions for Ultrasensitive MiRNA-155 Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10081-10091. [PMID: 35175026 DOI: 10.1021/acsami.1c23009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a member of the two-dimensional transition metal dichalcogenide family, rhenium disulfide (ReS2) is a highly competitive favorite in the field of photoelectric sensors. Nevertheless, the rapid recombination of electron-hole pairs and poor electronic transmission capacity of pure ReS2 limit its wider applications. As a new attempt to optimize its inherent structure and challenge its competency boundary, in this work, a bimetallic co-chamber feeding atomic layer deposition with a precise dose regulation strategy has been used to fabricate ReS2 nanotubes (ReS2-NTs) and MoS2-ReS2 heterojunction nanotubes (MoS2-ReS2-HNTs) based on the anodic aluminum oxide template sacrifice method for the first time. These obtained NTs have at least two advantages: they have a controllable diameter (40-500 nm), definite wall thickness (1 layer to 10 layers), and desirable Mo-to-Re ratio (0 to 90%), and their electron-transfer capacity and photocurrent response can be effectively enhanced by the incorporated Mo atoms. Further experiments indicated that MoS2-ReS2-HNTs with a real Mo-to-Re ratio of 31.0% exhibits the best photocurrent response performance, by which the ultrasensitive detection of cancer-related miRNA-155 with a linear range of 10 aM to 1 nM and a detection limit of 1.8 aM is achieved.
Collapse
Affiliation(s)
- Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Mengshu Kong
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
9
|
Zhang J, Wu Y, Hao H, Zhang Y, Chen X, Xing K, Xu J. Construction of amorphous Fe0.95S1.05 nanorods with high electrocatalytic activity for enhanced hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Das TK, Ping T, Mohapatra M, Anwar S, Chinnakonda GS, Jena BK. Concerted effect of Ni-in and S-out on ReS2 nanostructures towards high-efficiency oxygen evolution reaction. Chem Commun (Camb) 2022; 58:3689-3692. [DOI: 10.1039/d1cc07030d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a one-step hydrothermal reaction is developed to synthesize Ni-doped ReS2 nanostructure with the sulphur defect. The material exhibited excellent OER activity with a current density of 10 mAcm-2 at...
Collapse
|
11
|
Xu Y, Hao X, Zhang X, Wang T, Hu Z, Chen Y, Feng X, Liu W, Hao F, Kong X, He C, Ma S, Xu B. Increasing Oxygen Vacancy of CeO2 Nanocrystals by Ni Doping and reduced Graphene Oxides Decoration towards the Electrocatalytic Hydrogen Evolution. CrystEngComm 2022. [DOI: 10.1039/d2ce00209d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygen vacancy (VO) engineering is proved to be an effective approach for improving the hydrogen evolution reaction (HER) performance of low-cost metal oxides electrocatalysts. Cerium dioxide (CeO2), one of...
Collapse
|
12
|
Li T, Li Y, Li W, Jia S, Chen X, Zhang X, Yang F. The fabrication of a flexible electrode with trace Rh based on polypyrrole for the hydrogen evolution reaction. Chem Commun (Camb) 2021; 57:7370-7373. [PMID: 34259253 DOI: 10.1039/d1cc02004h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A multi-potential step method is proposed for constructing flexible PPy/Rh film electrodes. The obtained PPy/Rh films exhibit excellent hydrogen evolution reaction (HER) catalytic performance and can be used as flexible electrodes that maintain their initial catalytic performance after bending. Characterization shows that the active sites of the catalyst are due to electron transfer between Rh and PPy.
Collapse
Affiliation(s)
- Tiantian Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, National Demonstration Centre for Experimental Chemistry Education Northwest University, Xi'an 710127, China.
| | - You Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, National Demonstration Centre for Experimental Chemistry Education Northwest University, Xi'an 710127, China.
| | - Wenhao Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, National Demonstration Centre for Experimental Chemistry Education Northwest University, Xi'an 710127, China.
| | - Shijie Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, National Demonstration Centre for Experimental Chemistry Education Northwest University, Xi'an 710127, China.
| | - Xijie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, National Demonstration Centre for Experimental Chemistry Education Northwest University, Xi'an 710127, China.
| | - Xin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, National Demonstration Centre for Experimental Chemistry Education Northwest University, Xi'an 710127, China.
| | - Fengchun Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Material Science, National Demonstration Centre for Experimental Chemistry Education Northwest University, Xi'an 710127, China.
| |
Collapse
|
13
|
Zhao M, Yang M, Huang W, Liao W, Bian H, Chen D, Wang L, Tang J, Liu C. Synergism on Electronic Structures and Active Edges of Metallic Vanadium Disulfide Nanosheets via Co Doping for Efficient Hydrogen Evolution Reaction in Seawater. ChemCatChem 2021. [DOI: 10.1002/cctc.202100007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mengxuan Zhao
- Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen Key Laboratory of Polymer Science and Technology College of Materials Science and Engineering Shenzhen University 518060 Shenzhen P.R. China
| | - Mingyang Yang
- Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen Key Laboratory of Polymer Science and Technology College of Materials Science and Engineering Shenzhen University 518060 Shenzhen P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University 518060 Shenzhen P.R. China
| | - Weijie Huang
- Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen Key Laboratory of Polymer Science and Technology College of Materials Science and Engineering Shenzhen University 518060 Shenzhen P.R. China
| | - Wenchao Liao
- Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen Key Laboratory of Polymer Science and Technology College of Materials Science and Engineering Shenzhen University 518060 Shenzhen P.R. China
| | - Haidong Bian
- Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen Key Laboratory of Polymer Science and Technology College of Materials Science and Engineering Shenzhen University 518060 Shenzhen P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University 518060 Shenzhen P.R. China
| | - Dazhu Chen
- Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen Key Laboratory of Polymer Science and Technology College of Materials Science and Engineering Shenzhen University 518060 Shenzhen P.R. China
| | - Lei Wang
- Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen Key Laboratory of Polymer Science and Technology College of Materials Science and Engineering Shenzhen University 518060 Shenzhen P.R. China
| | - Jiaoning Tang
- Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen Key Laboratory of Polymer Science and Technology College of Materials Science and Engineering Shenzhen University 518060 Shenzhen P.R. China
| | - Chen Liu
- Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen Key Laboratory of Polymer Science and Technology College of Materials Science and Engineering Shenzhen University 518060 Shenzhen P.R. China
| |
Collapse
|