1
|
Khan S, Balyan P, Ali A, Sharma S, Sachar S. Exploring the effect of surfactants on the interactions of manganese dioxide nanoparticles with biomolecules. J Biomol Struct Dyn 2025; 43:644-664. [PMID: 38006308 DOI: 10.1080/07391102.2023.2283157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/27/2023] [Indexed: 11/27/2023]
Abstract
Interactions of manganese dioxide nanoparticles (MnO2 NPs) with vital biomolecules namely deoxyribonucleic acid (DNA) and serum albumin (BSA) have been studied in association with different surfactants by using fluorescence (steady state, synchronous and 3D), UV-visible, resonance light scattering (RLS), dynamic light scattering (DLS), and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The esterase activity of serum albumin was tested in associations with MnO2 NPs and surfactants. The antioxidant potential of prepared NPs was also evaluated (DPPH method). Gel electrophoresis was carried out to analyze the effect of MnO2 NPs and surfactants on DNA. Presence of CTAB, Tween 20, DTAB and Tween 80 enhanced nanoparticle-protein binding. Tween 20 based nanoparticle systems showed long-term stability and biocompatibility. The quenching of BSA fluorescence emission in presence of MnO2 NPs alone and along with Tween 20 revealed stronger association of nanoparticles with proteins. Enhancement in the esterase activity (BSA) was observed in the presence of Tween 20. Furthermore, radical scavenging activity showed highest antioxidant potential in presence of Tween 20. The enthalpy and entropy assessment for protein-NPs association showed the predominance of Vander Waals interactions and hydrogen bonding. The synchronous fluorescence analysis highlighted the involvement of tryptophan (Trp) in the MnO2 NPs-protein interactions. The study evaluates the influence of surfactant on the associations of MnO2 NPs with the essential biomolecules. The findings can be crucially utilized in designing biocompatible MnO2 formulations for long term applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shagufta Khan
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Prairna Balyan
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Punjab University, Chandigarh, India
| | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Mumbai, India
| |
Collapse
|
2
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Husain JH, Arumugam D, Nawabjohn MS, Kumaran S, Pandurangan AK. Green Synthesis of Silver Nanoparticles Using centratherum anthelminticum Extract against Breast Cancer Cells. Asian Pac J Cancer Prev 2024; 25:2711-2721. [PMID: 39205569 PMCID: PMC11495458 DOI: 10.31557/apjcp.2024.25.8.2711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE According to an international survey, the cancer occurrence in the breast is the foremost in women. Surgery and chemotherapy remain the definitive treatment for the breast cancer. The bio-green methods of synthesizing silver nanoparticles are cost-effective and eco-friendly when parallel to physical and chemical methods. In addition, they effectively control pathogenic microorganisms. Former research studies reveal that kalijiri a common name for Centratherum anthelminticum is used as a traditional medicine for various ailments including anti-bacterial, anti-fungal, antidiabetic and anticancer. Our present research study focal points on the green synthesis of silver nanoparticles using aqueous seed extract of Centratherum anthelminticum and the evaluation of their antioxidant and cytotoxic activity. METHODS An aqueous extract of seeds from Centratherum anthelminticum was prepared by boiling it with distilled water. The silver nanoparticles were synthesized from the seeds of Centratherum anthelminticum and characterized by various methods such as UV-Visible spectroscopy, FT-IR, Transmission electron microscopy, DLS and X-ray diffraction to confirm the formation of nanoparticles. RESULTS The cytotoxic analysis of MDA-MB-231 cells was tested with the synthesized silver nanoparticles complex. The observed result was IC50 of 35.06±1.2 and it was not shown any toxicity to the non-cancerous cell line. CONCLUSION In a nutshell, the synthesized silver nanoparticles from the seeds of Centratherum anthelminticum may be used for the treatment of breast cancer. Further studies are warranted to furnish the mechanism of action.
Collapse
Affiliation(s)
- Javeed Hameed Husain
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST road, Vandalur, Chennai-600048, Tamil Nadu, India.
| | - Deepan Arumugam
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST road, Vandalur, Chennai-600048, Tamil Nadu, India.
| | - Mohamed Suhail Nawabjohn
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST road, Vandalur, Chennai-600048, Tamil Nadu, India.
| | - Sekar Kumaran
- Department of Botany, Government Arts and Science College, Harur, Tamil Nadu, India.
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST road, Vandalur, Chennai-600048, Tamil Nadu, India.
| |
Collapse
|
4
|
Hu Z, Qin Z, Xie J, Qu Y, Yin L. Cannabidiol and its application in the treatment of oral diseases: therapeutic potentials, routes of administration and prospects. Biomed Pharmacother 2024; 176:116271. [PMID: 38788594 DOI: 10.1016/j.biopha.2024.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/26/2024] Open
Abstract
Cannabidiol (CBD), one of the most important active ingredients in cannabis, has been reported to have some pharmacological effects such as antibacterial and analgesic effects, and to have therapeutic potential in the treatment of oral diseases such as oral cancer, gingivitis and periodontal diseases. However, there is a lack of relevant systematic research and reviews. Therefore, based on the etiology and clinical symptoms of several common oral diseases, this paper focuses on the therapeutic potential of CBD in periodontal diseases, pulp diseases, oral mucosal diseases, oral cancer and temporomandibular joint diseases. The pharmacological effects of CBD and the distribution and function of its receptors in the oral cavity are also summarized. In order to provide reference for future research and further clinical application of CBD, we also summarize several possible routes of administration and corresponding characteristics. Finally, the challenges faced while applying CBD clinically and possible solutions are discussed, and we also look to the future.
Collapse
Affiliation(s)
- Zonghao Hu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zishun Qin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jinhong Xie
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Yue Qu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lihua Yin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Freire MS, Silva HJB, Albuquerque GM, Monte JP, Lima MTA, Silva JJ, Pereira GAL, Pereira G. Advances on chalcogenide quantum dots-based sensors for environmental pollutants monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172848. [PMID: 38703843 DOI: 10.1016/j.scitotenv.2024.172848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.
Collapse
Affiliation(s)
- Mércia S Freire
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hitalo J B Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Joalen P Monte
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Jailson J Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
6
|
Hsu JC, Lau KC, Barragan D, Mossburg KJ, Cormode DP, Maidment ADA. Influence of Acquisition Parameters on Silver Sulfide Nanoparticle Contrast in Photon-Counting Digital Mammography: A Phantom Study. ACS APPLIED NANO MATERIALS 2024; 7:4805-4813. [PMID: 39882402 PMCID: PMC11774497 DOI: 10.1021/acsanm.3c05431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Photon-counting mammography is an emerging modality that allows for spectral imaging and provides a differentiation of material compositions. The development of photon-counting mammography-specific contrast agents has yet to be explored. In this study, the contrast, sensitivity, and organ dose between silver sulfide nanoparticles (Ag2S-NPs) and a clinically approved iodinated agent (iopamidol) were investigated using a contrast-embedded gradient ramp phantom and a prototype scanner. For a given agent, the signal intensity increased with concentration, tube voltage (kV), and high bin fraction, while remaining constant with the tube current exposure time product (mAs). Moreover, Ag2S-NPs produced significantly stronger contrast and improved sensitivity compared to iodine, especially when imaged at lower tube energies. Therefore, the use of photon-counting techniques and a silver-based contrast agent may markedly increase the contrast and contrast-to-noise ratios or reduce the radiation dose for contrast-enhanced mammography. Silver may be better suited than iodine for contrast agent development for spectral photon-counting mammography.
Collapse
Affiliation(s)
- Jessica C Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kristen C Lau
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Diego Barragan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katherine J Mossburg
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew D A Maidment
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Hsu JC, Barragan D, Tward AE, Hajfathalian M, Amirshaghaghi A, Mossburg KJ, Rosario-Berríos DN, Bouché M, Andrianov AK, Delikatny EJ, Cormode DP. A Biodegradable "One-For-All" Nanoparticle for Multimodality Imaging and Enhanced Photothermal Treatment of Breast Cancer. Adv Healthc Mater 2024; 13:e2303018. [PMID: 38117252 PMCID: PMC10965380 DOI: 10.1002/adhm.202303018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Silver sulfide nanoparticles (Ag2S-NP) hold promise for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA), and photothermal therapy (PTT). However, their NIR absorbance is relatively low, and previous formulations are synthesized using toxic precursors under harsh conditions and are not effectively cleared due to their large size. Herein, sub-5 nm Ag2S-NP are synthesized and encapsulated in biodegradable, polymeric nanoparticles (AgPCPP). All syntheses are conducted using biocompatible, aqueous reagents under ambient conditions. The encapsulation of Ag2S-NP in polymeric nanospheres greatly increases their NIR absorbance, resulting in enhanced optical imaging and PTT effects. AgPCPP nanoparticles exhibit potent contrast properties suitable for PA and NIRF imaging, as well as for computed tomography (CT). Furthermore, AgPCPP nanoparticles readily improve the conspicuity of breast tumors in vivo. Under NIR laser irradiation, AgPCPP nanoparticles significantly reduce breast tumor growth, leading to prolonged survival compared to free Ag2S-NP. Over time, AgPCPP retention in tissues gradually decreases, without any signs of acute toxicity, providing strong evidence of their safety and biodegradability. Therefore, AgPCPP may serve as a "one-for-all" theranostic agent that degrades into small components for excretion after fulfilling diagnostic and therapeutic tasks, offering good prospects for clinical translation.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Diego Barragan
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Alexander E. Tward
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Maryam Hajfathalian
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katherine J. Mossburg
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Derick N. Rosario-Berríos
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathilde Bouché
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - Alexander K. Andrianov
- Institute of Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - E. James Delikatny
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Konwar K, Kaushik SD, Babu PD, Chaturvedi A, Kumar D, Chakraborty R, Mukhopadhyay R, Sharma P, Lodha S, Sen D, Deb P. Integrative Modulation of Magnetic Resonance Transverse and Longitudinal Relaxivity in a Cell-Viable Bimagnetic Ensemble, γ-Fe 2O 3@ZnFe 2O 4. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1793-1803. [PMID: 38181379 DOI: 10.1021/acs.langmuir.3c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The potential application of magnetic nanosystems as magnetic resonance imaging (MRI) contrast agents has been thoroughly investigated. This work seeks to attain robust MRI-contrast efficiency by designing an interacting landscape of a bimagnetic ensemble of zinc ferrite nanorods and maghemite nanoparticles, γ-Fe2O3@ZnFe2O4. Because of competing spin clusters and structural anisotropy triggered by isotropic γ-Fe2O3 and anisotropic ZnFe2O4, γ-Fe2O3@ZnFe2O4 undergoes the evolution of cluster spin-glass state as evident from the critical slowing down law. Such interacting γ-Fe2O3@ZnFe2O4 with spin flipping of 1.2 × 10-8 s and energy barrier of 8.2 × 10-14 erg reflects enhanced MRI-contrast signal. Additionally, γ-Fe2O3@ZnFe2O4 is cell-viable to noncancerous HEK 293 cell-line and shows no pro-tumorigenic activity as observed in MDA-MB-231, an extremely aggressive triple-negative breast cancer cell line. As a result, γ-Fe2O3@ZnFe2O4 is a feasible option for an MRI-contrast agent having longitudinal relaxivity, r1, of 0.46 s-1mM-1 and transverse relaxivity, r2, of 15.94 s-1mM-1, together with r2/r1 of 34.65 at 1.41 T up to a modest metal concentration of 0.1 mM. Hence, this study addresses an interacting isotropic/anisotropic framework with faster water proton decay in MR-relaxivity resulting in phantom signal amplification.
Collapse
Affiliation(s)
- Korobi Konwar
- Department of Physics, Tezpur University (Central University), Tezpur-784028, India
| | - Som Datta Kaushik
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, R-5 Shed, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Peram Delli Babu
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, R-5 Shed, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Rituraj Chakraborty
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur784028, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur784028, India
| | - Pooja Sharma
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Saurabh Lodha
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pritam Deb
- Department of Physics, Tezpur University (Central University), Tezpur-784028, India
| |
Collapse
|
9
|
Xie N. Synthesis and antibacterial effects of silver nanoparticles (AgNPs) against multi-drug resistant bacteria. Biomed Mater Eng 2024; 35:451-463. [PMID: 38995765 DOI: 10.3233/bme-240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
BACKGROUND The emergence of the global problem of multi-drug resistant bacteria (MDR) is closely related to the improper use of antibiotics, which gives birth to an urgent need for antimicrobial innovation in the medical and health field. Silver nanoparticles (AgNPs) show significant antibacterial potential because of their unique physical and chemical properties. By accurately regulating the morphology, size and surface properties of AgNPs, the antibacterial properties of AgNPs can be effectively enhanced and become a next generation antibacterial material with great development potential. OBJECTIVE The detection of the inhibitory effect of AgNPs on MDR provides more possibilities for the research and development of new antimicrobial agents. METHODS Promote the formation of AgNPs by redox reaction; determine the minimum inhibitory concentration (MIC) of AgNPs to bacteria by broth microdilution method; evaluate the killing efficacy of AgNPs against multi-drug-resistant bacteria by plate counting; evaluate the inhibitory effect of AgNPs on biofilm construction by crystal violet staining; study the drug resistance of bacteria by gradually increasing the concentration of AgNPs; and detect the toxicity of AgNPs to cells by CCK-8 method. RESULTS AgNPs has a significant bactericidal effect on a variety of drug-resistant bacteria. After exposure to AgNPs solution for 12 hours, the number of E. coli decreased sharply, and S. aureus was basically eliminated after 16 hours. In particular, AgNPs showed stronger inhibition against Gram-negative bacteria. In addition, AgNPs can effectively hinder the formation of bacterial biofilm, and its inhibitory effect increases with the increase of AgNPs solution concentration. When AgNPs is used for a long time, the development of bacterial resistance to it is slow. From the point of view of safety, AgNPs has no harmful effects on organisms and has biosafety. CONCLUSION AgNPs can inhibit MDR, and the bacteriostatic ability of Gram-negative bacteria is higher than that of Gram-positive bacteria. It can also inhibit the formation of bacterial biofilm, avoid drug resistance and reduce cytotoxicity.
Collapse
Affiliation(s)
- Na Xie
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Hsu JC, Barragan D, Tward AE, Hajfathalian M, Amirshaghaghi A, Mossburg KJ, Rosario-Berríos DN, Bouché M, Andrianov AK, James Delikatny E, Cormode DP. A biodegradable "one-for-all" nanoparticle for multimodality imaging and enhanced photothermal treatment of breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568885. [PMID: 38076898 PMCID: PMC10705255 DOI: 10.1101/2023.11.28.568885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2024]
Abstract
Silver sulfide nanoparticles (Ag 2 S-NP) have been proposed for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA) and photothermal therapy (PTT). However, their absorbance is relatively low in the NIR window used in these applications, and previous formulations were synthesized using toxic precursors under harsh conditions and have clearance issues due to their large size. Herein, we synthesized sub-5 nm Ag 2 S-NP and encapsulated them in biodegradable, polymeric nanoparticles (AgPCPP). All syntheses were conducted using biocompatible reagents in the aqueous phase and under ambient conditions. We found that the encapsulation of Ag 2 S-NP in polymeric nanospheres greatly increases their NIR absorbance, resulting in enhanced optical imaging and photothermal heating effects. We therefore found that AgPCPP have potent contrast properties for PA and NIRF imaging, as well as for computed tomography (CT). We demonstrated the applicability of AgPCPP nanoparticles as a multimodal imaging probe that readily improves the conspicuity of breast tumors in vivo . PTT was performed using AgPCPP with NIR laser irradiation, which led to significant reduction in breast tumor growth and prolonged survival compared to free Ag 2 S-NP. Lastly, we observed a gradual decrease in AgPCPP retention in tissues over time with no signs of acute toxicity, thus providing strong evidence of safety and biodegradability. Therefore, AgPCPP may serve as a "one-for-all" theranostic agent that degrades into small components for excretion once the diagnostic and therapeutic tasks are fulfilled, thus providing good prospects for translation to clinical use. TOC graphic
Collapse
|
11
|
Owens TC, Anton N, Attia MF. CT and X-ray contrast agents: Current clinical challenges and the future of contrast. Acta Biomater 2023; 171:19-36. [PMID: 37739244 DOI: 10.1016/j.actbio.2023.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Computed tomography (CT) is a powerful and widely used imaging technique in modern medicine. However, it often requires the use of contrast agents to visualize structures with similar radiographic density. Unfortunately, current clinical contrast agents (CAs) for CT have remained largely unchanged for decades and come with several significant drawbacks, including serious nephrotoxicity and short circulation half-lives. The next generation of CT radiocontrast agents should strive to be long-circulating, non-toxic, and non-immunogenic. Nanoparticle contrast agents have shown promise in recent years and are likely to comprise the majority of next-generation CT contrast agents. This review highlights the fundamental mechanism and background of X-ray and contrast agents. It also focuses on the challenges associated with current clinical contrast agents and provides a brief overview of potential future agents that are based on various materials such as lipids, polymers, dendrimers, metallic, and non-metallic inorganic nanoparticles (NPs). STATEMENT OF SIGNIFICANCE: We realized a need for clarification on a number of concerns related to the use of iodinated contrast material as debates regarding the safety of these agents with patients with kidney disease, shellfish allergies, and thyroid dysfunction remain ongoing in medical practice. This review was partially inspired by debates witnessed in medical practice regarding outdated misconceptions of contrast material that warrant clarification in translational and clinical arenas. Given that conversation around currently available agents is at somewhat of a high water mark, and nanoparticle research has now reached an unprecedented number of readers, we find that this review is timely and unique in the context of recent discussions in the field.
Collapse
Affiliation(s)
- Tyler C Owens
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Mohamed F Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Zhou Z, Cen J, Jiang N, Sun Y, Li Z, Yang L. A ratiometric fluorescent nanoprobe based on CdSe quantum dots for the detection of Ag + in environmental samples and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122302. [PMID: 36603280 DOI: 10.1016/j.saa.2022.122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
With the widespread application of Ag+ in modern life and industry, the potential hazardous effects of Ag+ to environment and humans have attracted great concerns. Thus, effective and rapid strategies for Ag+ detection are highly desirable. In this paper, a novel ratiometric fluorescence sensor using CdSe quantum dots (QDs) has been constructed for sensitive and selective detection of Ag+, which is based on the formation of Ag2Se QDs. CdSe QDs were initially prepared and showed single wavelength emission at 510 nm. When Ag+ exists, a rising peak appeared at 650 nm and the emission at 510 nm declined, exhibiting distinct ratiometric fluorescence emission (I650/I510) characteristic with a linear response over the Ag+ concentration range of 0.01-4 μM. Significantly, the fluorescence changed from green to red. The detection limit of the constructed sensor is 1.4 nM. Furthermore, the sensing assay can be successfully applied to detect Ag+ in real water samples and living cells.
Collapse
Affiliation(s)
- Zhiqiang Zhou
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jianfang Cen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Naijia Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Yu Sun
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Zhouyang Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Liyun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
14
|
Ye C, Li Z, Chang Z, Wu S, Sun Y, Xu W. Dual-Emission 2D Blue Luminescent Organic Silver Chalcogenide for Highly Selective Pb 2+ Detection in an Aqueous Medium. Inorg Chem 2023; 62:2334-2341. [PMID: 36695316 DOI: 10.1021/acs.inorgchem.2c04113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Crystalline organic metal chalcogenides (OMCs) are a class of organic-inorganic hybrid semiconducting materials with continuous M-X (X = S, Se, Te) networks formed by the combination of metal nodes and chalcogen atoms from the organic ligands, which display great potentials in the fields of optoelectronics, catalysis, sensing, as well as energy conversion and storage. Here, we synthesized a wave-like 2D OMC material, [(AgBF4)2Me6BHS]n (Ag-BHSMe), from AgBF4 and 1,2,3,4,5,6-hexa(methylselanyl)benzene (Me6BHS) through a simple homogeneous reaction. In the solid state, Ag-BHSMe exhibits both fluorescence emission at room temperature and phosphorescent emission at 77 K. TEM, SEM, and confocal microscopy revealed that it is an intrinsic blue luminescent microcrystalline material. In addition, we found that it exhibited a highly selective fluorescence enhancement response to Pb2+ in an aqueous solution in the range of 10-4 to 10-2 mol L-1, which demonstrates its potential as a turn-on probe for the detection of lead ions.
Collapse
Affiliation(s)
- Chunhui Ye
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Ze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Zixin Chang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Sha Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| | - Yimeng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China.,University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
15
|
Li B, Wang G, Tong Y, Zhang Y, Sun SK, Yu C. Noninvasive Gastrointestinal Tract Imaging Using BSA-Ag 2Te Quantum Dots as a CT/NIR-II Fluorescence Dual-Modal Imaging Probe in Vivo. ACS Biomater Sci Eng 2023; 9:449-457. [PMID: 36475590 DOI: 10.1021/acsbiomaterials.2c00886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of high-resolution computed tomography (CT) and the real-time sensitive second near-infrared window (NIR-II) fluorescence bioimaging can provide complementary information for the diagnosis, progression and prognosis of gastrointestinal disorders. Ag2Te quantum dots (QDs) are a kind of promising CT/NIR-II fluorescence dual-modal imaging probe due to their high atomic number and narrow bandgap. However, conventional Ag2Te QDs synthesized by oil phase approaches often suffer from complicated steps, harsh reaction conditions, and toxic organic solvents. Herein, we report the synthesis of bovine serum albumin (BSA)-Ag2Te QDs using a biomineralization approach for CT/NIR-II fluorescence dual-modal imaging of the gastrointestinal tract. The BSA-Ag2Te QDs are fabricated in a facile one-pot approach under mild conditions and exhibit homogeneous size, favorable monodispersity, admirable aqueous solubility, excellent X-ray attenuation properties, and outstanding NIR-II fluorescence performance. In vivo imaging experiments show that BSA-Ag2Te QDs can be used in gastrointestinal tract CT/NIR-II dual-modal imaging with high spatiotemporal resolution and sensitivity. In addition, in an intestinal obstruction mouse model, accurate lesion positioning and imaging-guided obstruction relief surgery are successfully realized based on BSA-Ag2Te QDs. Besides, BSA-Ag2Te QDs have outstanding biocompatibility in vitro and in vivo. This study presents a high-performance and biosafe CT/NIR-II fluorescence dual-modal imaging probe for visualizing the gastrointestinal tract in vivo.
Collapse
Affiliation(s)
- Bingjie Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yujie Tong
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yujie Zhang
- Department of Pathology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
16
|
Rabaan AA, Bukhamsin R, AlSaihati H, Alshamrani SA, AlSihati J, Al-Afghani HM, Alsubki RA, Abuzaid AA, Al-Abdulhadi S, Aldawood Y, Alsaleh AA, Alhashem YN, Almatouq JA, Emran TB, Al-Ahmed SH, Nainu F, Mohapatra RK. Recent Trends and Developments in Multifunctional Nanoparticles for Cancer Theranostics. Molecules 2022; 27:8659. [PMID: 36557793 PMCID: PMC9780934 DOI: 10.3390/molecules27248659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Conventional anticancer treatments, such as radiotherapy and chemotherapy, have significantly improved cancer therapy. Nevertheless, the existing traditional anticancer treatments have been reported to cause serious side effects and resistance to cancer and even to severely affect the quality of life of cancer survivors, which indicates the utmost urgency to develop effective and safe anticancer treatments. As the primary focus of cancer nanotheranostics, nanomaterials with unique surface chemistry and shape have been investigated for integrating cancer diagnostics with treatment techniques, including guiding a prompt diagnosis, precise imaging, treatment with an effective dose, and real-time supervision of therapeutic efficacy. Several theranostic nanosystems have been explored for cancer diagnosis and treatment in the past decade. However, metal-based nanotheranostics continue to be the most common types of nonentities. Consequently, the present review covers the physical characteristics of effective metallic, functionalized, and hybrid nanotheranostic systems. The scope of coverage also includes the clinical advantages and limitations of cancer nanotheranostics. In light of these viewpoints, future research directions exploring the robustness and clinical viability of cancer nanotheranostics through various strategies to enhance the biocompatibility of theranostic nanoparticles are summarised.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Rehab Bukhamsin
- Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Jehad AlSihati
- Internal Medicine Department, Gastroenterology Section, King Fahad Specialist Hospital, Dammam 31311, Saudi Arabia
| | - Hani M. Al-Afghani
- Laboratory Department, Security Forces Hospital, Makkah 24269, Saudi Arabia
- iGene Center for Research and Training, Jeddah 23484, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Abdulmonem A. Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Yahya Aldawood
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Yousef N. Alhashem
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Jenan A. Almatouq
- Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|
17
|
Nieves LM, Dong YC, Rosario-Berríos DN, Mossburg K, Hsu JC, Cramer GM, Busch TM, Maidment ADA, Cormode DP. Renally Excretable Silver Telluride Nanoparticles as Contrast Agents for X-ray Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34354-34364. [PMID: 35867906 PMCID: PMC9482380 DOI: 10.1021/acsami.2c06190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of nanoparticles in the biomedical field has gained much attention due to their applications in biomedical imaging, drug delivery, and therapeutics. Silver telluride nanoparticles (Ag2Te NPs) have been recently shown to be highly effective computed tomography (CT) and dual-energy mammography contrast agents with good stability and biocompatibility, as well as to have potential for many other biomedical purposes. Despite their numerous advantageous properties for diagnosis and treatment of disease, the clinical translation of Ag2Te NPs is dependent on achieving high levels of excretion, a limitation for many nanoparticle types. In this work, we have synthesized and characterized a library of Ag2Te NPs and identified conditions that led to 3 nm core size and were renally excretable. We found that these nanoparticles have good biocompatibility, strong X-ray contrast generation, and rapid renal clearance. Our CT data suggest that renal elimination of nanoparticles occurred within 2 h of administration. Moreover, biodistribution data indicate that 93% of the injected dose (%ID) has been excreted from the main organs in 24 h, 95% ID in 7 days, and 97% ID in 28 days with no signs of acute toxicity in the tissues studied under histological analysis. To our knowledge, this renal clearance is the best reported for Ag2Te NP, while being comparable to the highest renal clearance reported for any type of nanoparticle. Together, the results herein presented suggest the use of GSH-Ag2Te NPs as an X-ray contrast agent with the potential to be clinically translated in the future.
Collapse
Affiliation(s)
- Lenitza M Nieves
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Derick N Rosario-Berríos
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katherine Mossburg
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica C Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gwendolyn M Cramer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew D A Maidment
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Cardiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Wang T, Wang Y, Fan W, Wu R, Liang Q, Hao J. Boosting room-temperature NO 2 detection via in-situ interfacial engineering on Ag 2S/SnS 2 heterostructures. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128782. [PMID: 35428539 DOI: 10.1016/j.jhazmat.2022.128782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The effective detection of hazardous gases has become extremely necessary for the ecological environment and public health. Interfacial engineering plays an indispensable role in the development of innovative materials with exceptional properties, thus triggering a new revolution in the realization of high-performance gas sensing. Herein, the rational designed Ag2S/SnS2 heterostructures were synthesized via a facile in-situ cation-exchange method. The coshared S atoms derived from in-situ interfacial engineering enable intimate atomic-level contact and strong electron coupling between SnS2 and Ag2S, which efficiently assist interfacial charge redistribution and transport as confirmed theoretically and experimentally. Benefiting from the high-quality interface of the heterostructures, the resultant Ag2S/SnS2 sensor delivered an ultrahigh response (286%) together with short response/recovery time (17 s/38 s) to 1 ppm NO2. The sensor also demonstrated superior sensing selectivity and reliable repeatability at room-temperature. Such excellent sensing performance could be synergistically ascribed to the junction effect and interfacial engineering of Ag2S/SnS2 heterostructures, which not only modulates the electronic properties of SnS2 but also provides abundant adsorption sites for gas sensing. This study offers guidance for engineering heterostructures with high-quality interface, which might stimulate the exploitation of other novel materials and widen their potential applications.
Collapse
Affiliation(s)
- Tingting Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - You Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Wenqi Fan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruozhen Wu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qihua Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
19
|
Xu X, Tian K, Lou X, Du Y. Potential of Ferritin-Based Platforms for Tumor Immunotherapy. Molecules 2022; 27:2716. [PMID: 35566065 PMCID: PMC9104857 DOI: 10.3390/molecules27092716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Ferritin is an iron storage protein that plays a key role in iron homeostasis and cellular antioxidant activity. Ferritin has many advantages as a tumor immunotherapy platform, including a small particle size that allows for penetration into tumor-draining lymph nodes or tumor tissue, a unique structure consisting of 24 self-assembled subunits, cavities that can encapsulate drugs, natural targeting functions, and a modifiable outer surface. In this review, we summarize related research applying ferritin as a tumor immune vaccine or a nanocarrier for immunomodulator drugs based on different targeting mechanisms (including dendritic cells, tumor-associated macrophages, tumor-associated fibroblasts, and tumor cells). In addition, a ferritin-based tumor vaccine expected to protect against a wide range of coronaviruses by targeting multiple variants of SARS-CoV-2 has entered phase I clinical trials, and its efficacy is described in this review. Although ferritin is already on the road to transformation, there are still many difficulties to overcome. Therefore, three barriers (drug loading, modification sites, and animal models) are also discussed in this paper. Notwithstanding, the ferritin-based nanoplatform has great potential for tumor immunotherapy, with greater possibility of clinical transformation.
Collapse
Affiliation(s)
- Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (X.X.); (K.T.)
| | - Kewei Tian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (X.X.); (K.T.)
| | - Xuefang Lou
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Viegas IMA, Gonçalves IWV, Santos BS, Fontes A, Pereira MGC, Pereira CF, Pereira GAL. Synthesis of hydrophilic Ag 2Se quantum dots optically optimized by multivariate strategies: an easy one-pot approach. NEW J CHEM 2022. [DOI: 10.1039/d2nj03696g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A simple and fast aqueous synthesis of silver selenide quantum dots is proposed with the aid of multivariate optimization.
Collapse
Affiliation(s)
- Isabelle M. A. Viegas
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-560, Brazil
- Danish Offshore Technology Centre, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Ingrid W. V. Gonçalves
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-560, Brazil
| | - Beate S. Santos
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, 50740-521, Brazil
| | - Adriana Fontes
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, PE, 50670-901, Brazil
| | - Maria Goreti C. Pereira
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-560, Brazil
| | - Claudete F. Pereira
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-560, Brazil
| | - Giovannia A. L. Pereira
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-560, Brazil
| |
Collapse
|
21
|
Hsu JC, Du Y, Sengupta A, Dong YC, Mossburg KJ, Bouché M, Maidment ADA, Weljie AM, Cormode DP. Effect of Nanoparticle Synthetic Conditions on Ligand Coating Integrity and Subsequent Nano-Biointeractions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58401-58410. [PMID: 34846845 PMCID: PMC8715381 DOI: 10.1021/acsami.1c18941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Most current nanoparticle formulations have relatively low clearance efficiency, which may hamper their likelihood for clinical translation. Herein, we sought to compare the clearance and cellular distribution profiles between sub-5 nm, renally-excretable silver sulfide nanoparticles (Ag2S-NPs) synthesized via either a bulk, high temperature, or a microfluidic, room temperature approach. We found that the thermolysis approach led to significant ligand degradation, but the surface coating shell was unaffected by the microfluidic synthesis. We demonstrated that the clearance was improved for Ag2S-NPs with intact ligands, with less uptake in the liver. Moreover, differential distribution in hepatic cells was observed, where Ag2S-NPs with degraded coatings tend to accumulate in Kupffer cells and those with intact coatings are more frequently found in hepatocytes. Therefore, understanding the impact of synthetic processes on ligand integrity and subsequent nano-biointeractions will aid in designing nanoparticle platforms with enhanced clearance and desired distribution profiles.
Collapse
Affiliation(s)
- Jessica C Hsu
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yu Du
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yuxi C Dong
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katherine J Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Andrew D A Maidment
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|