1
|
Blanco-Rey M, Castrillo R, Ali K, Gargiani P, Ilyn M, Gastaldo M, Paradinas M, Valbuena MA, Mugarza A, Ortega JE, Schiller F, Fernández L. The Role of Rare-Earth Atoms in the Anisotropy and Antiferromagnetic Exchange Coupling at a Hybrid Metal-Organic Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402328. [PMID: 39150001 DOI: 10.1002/smll.202402328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Magnetic anisotropy and magnetic exchange interactions are crucial parameters that characterize the hybrid metal-organic interface, a key component of an organic spintronic device. It is shown that the incorporation of 4f RE atoms to hybrid metal-organic interfaces of CuPc/REAu2 type (RE = Gd, Ho) constitutes a feasible approach toward on-demand magnetic properties and functionalities. The GdAu2 and HoAu2 substrates differ in their magnetic anisotropy behavior. Remarkably, the HoAu2 surface promotes the inherent out-of-plane anisotropy of CuPc, owing to the match between the anisotropy axis of substrate and molecule. Furthermore, the presence of RE atoms leads to a spontaneous antiferromagnetic exchange coupling at the interface, induced by the 3d-4f superexchange interaction between the unpaired 3d electron of CuPc and the 4f electrons of the RE atoms. It is shown that 4f RE atoms with unquenched quantum orbital momentum ( L $L$ ), as it is the case of Ho, induce an anisotropic interfacial exchange coupling.
Collapse
Affiliation(s)
- María Blanco-Rey
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco UPV/EHU, San Sebastián, 20018, Spain
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
| | - Rodrigo Castrillo
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
| | - Khadiza Ali
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
- Chalmers University of Technology, Göteborg, Göteborg, 412 96, Sweden
| | | | - Maxim Ilyn
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
| | - Michele Gastaldo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Markos Paradinas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Miguel A Valbuena
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Madrid, 28049, Spain
| | - Aitor Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, 08010, Spain
| | - J Enrique Ortega
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
- Departamento de Física Aplicada I, Universidad del País Vasco UPV/EHU, San Sebastián, 20018, Spain
| | - Frederik Schiller
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
| | - Laura Fernández
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- CIC nanoGUNE-BRTA, San Sebastián, 20018, Spain
| |
Collapse
|
2
|
Fu H, Jiang Y, Zhang M, Zhong Z, Liang Z, Wang S, Du Y, Yan C. High-entropy rare earth materials: synthesis, application and outlook. Chem Soc Rev 2024; 53:2211-2247. [PMID: 38240305 DOI: 10.1039/d2cs01030e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Recently, high-entropy (HE) materials have attracted increasing interest in various fields due to their unique characteristics. Rare earth (RE) elements have a similar atomic radius and gradually occupied 4f orbitals, endowing them with abundant optical, electric, and magnetic properties. Furthermore, HE-RE materials exhibit good structural and thermal stability and various functional properties, emerging as an important class of HE materials, which are on the verge of rapid development. However, a comprehensive review focusing on the introduction and in-depth understanding of HE-RE materials has not been reported to date. Thus, this review endeavors to provide a comprehensive summary of the development and research status of HE-RE materials, including alloys and ceramics, ranging from their structure, synthesis, and properties to applications. In addition, some distinctive issues of HR-RE materials related to the special electronic structure of RE are also discussed. Finally, we put forward the current challenges and future development directions of HE-RE materials. We hope that this review will provide inspiration for new design ideas and valuable references in this emerging field in the future.
Collapse
Affiliation(s)
- Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ziyun Zhong
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Siyuan Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Chunhua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Nakamura T, Sugihara H, Chen Y, Yukawa R, Ohtsubo Y, Tanaka K, Kitamura M, Kumigashira H, Kimura SI. Two-dimensional heavy fermion in a monoatomic-layer Kondo lattice YbCu 2. Nat Commun 2023; 14:7850. [PMID: 38040781 PMCID: PMC10692116 DOI: 10.1038/s41467-023-43662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
The Kondo effect between localized f-electrons and conductive carriers leads to exotic physical phenomena. Among them, heavy-fermion (HF) systems, in which massive effective carriers appear due to the Kondo effect, have fascinated many researchers. Dimensionality is also an important characteristic of the HF system, especially because it is strongly related to quantum criticality. However, the realization of the perfect two-dimensional (2D) HF materials is still a challenging topic. Here, we report the surface electronic structure of the monoatomic-layer Kondo lattice YbCu2 on a Cu(111) surface observed by synchrotron-based angle-resolved photoemission spectroscopy. The 2D conducting band and the Yb 4f state, located very close to the Fermi level, are observed. These bands are hybridized at low-temperature, forming the 2D HF state, with an evaluated coherence temperature of about 30 K. The effective mass of the 2D state is enhanced by a factor of 100 by the development of the HF state. Furthermore, clear evidence of the hybridization gap formation in the temperature dependence of the Kondo-resonance peak has been observed below the coherence temperature. Our study provides a new candidate as an ideal 2D HF material for understanding the Kondo effect at low dimensions.
Collapse
Affiliation(s)
- Takuto Nakamura
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.
| | - Hiroki Sugihara
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Yitong Chen
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Ryu Yukawa
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yoshiyuki Ohtsubo
- National Institutes for Quantum Science and Technology, Sendai, 980-8579, Japan
| | | | - Miho Kitamura
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, 305-0801, Japan
| | - Hiroshi Kumigashira
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
| | - Shin-Ichi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.
- Institute for Molecular Science, Okazaki, 444-8585, Japan.
| |
Collapse
|
4
|
Matetskiy AV, Milotti V, Sheverdyaeva PM, Moras P, Carbone C, Mihalyuk AN. Interplay between magnetic order and electronic band structure in ultrathin GdGe 2 metalloxene films. NANOSCALE 2023; 15:16080-16088. [PMID: 37750836 DOI: 10.1039/d3nr03398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Dimensionality can strongly influence the magnetic structure of solid systems. Here, we predict theoretically and confirm experimentally that the antiferromagnetic (AFM) ground state of bulk gadolinium germanide metalloxene, which has a quasi-layered defective GdGe2 structure, is preserved in the ultrathin film limit. Ab initio calculations demonstrate that ultrathin GdGe2 films present in-plane intra-layer ferromagnetic coupling and AFM inter-layer coupling in the ground state. Angle-resolved photoemission spectroscopy finds the AFM-induced band splitting expected for the 2 and 3 GdGe2 trilayer (TL) films, which disappear above the Néel temperature. The comparative analysis of isostructural ultrathin DyGe2 and GdSi2 films confirms the magnetic origin of the observed band splitting. These findings are in contrast with the recent report of ferromagnetism in ultrathin metalloxene films, which we ascribe to the presence of uncompensated magnetic moments.
Collapse
Affiliation(s)
- Andrey V Matetskiy
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Valeria Milotti
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Polina M Sheverdyaeva
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Paolo Moras
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Carlo Carbone
- Istituto di Struttura della Materia-CNR (ISM-CNR), Strada Statale 14 km 163.5, 34149, Trieste, Italy.
| | - Alexey N Mihalyuk
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 690950 Vladivostok, Russia
| |
Collapse
|
5
|
Muñiz Cano B, Ferreiros Y, Pantaleón PA, Dai J, Tallarida M, Figueroa AI, Marinova V, García-Díez K, Mugarza A, Valenzuela SO, Miranda R, Camarero J, Guinea F, Silva-Guillén JA, Valbuena MA. Experimental Demonstration of a Magnetically Induced Warping Transition in a Topological Insulator Mediated by Rare-Earth Surface Dopants. NANO LETTERS 2023. [PMID: 37156508 DOI: 10.1021/acs.nanolett.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Magnetic topological insulators constitute a novel class of materials whose topological surface states (TSSs) coexist with long-range ferromagnetic order, eventually breaking time-reversal symmetry. The subsequent bandgap opening is predicted to co-occur with a distortion of the TSS warped shape from hexagonal to trigonal. We demonstrate such a transition by means of angle-resolved photoemission spectroscopy on the magnetically rare-earth (Er and Dy) surface-doped topological insulator Bi2Se2Te. Signatures of the gap opening are also observed. Moreover, increasing the dopant coverage results in a tunable p-type doping of the TSS, thereby allowing for a gradual tuning of the Fermi level toward the magnetically induced bandgap. A theoretical model where a magnetic Zeeman out-of-plane term is introduced in the Hamiltonian governing the TSS rationalizes these experimental results. Our findings offer new strategies to control magnetic interactions with TSSs and open up viable routes for the realization of the quantum anomalous Hall effect.
Collapse
Affiliation(s)
- Beatriz Muñiz Cano
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Yago Ferreiros
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Pierre A Pantaleón
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Ji Dai
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Massimo Tallarida
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Adriana I Figueroa
- Departament de Física de la Matéria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
| | - Vera Marinova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bontchev, Str. 109, 1113 Sofia, Bulgaria
| | - Kevin García-Díez
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
| | - Aitor Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
- ICREA Institució Catalana de Recerca i Estudis Avançats, Lluis Companys 23, 08010 Barcelona, Spain
| | - Sergio O Valenzuela
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Barcelona, Spain
- ICREA Institució Catalana de Recerca i Estudis Avançats, Lluis Companys 23, 08010 Barcelona, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Instituto "Nicolás Cabrera" and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Julio Camarero
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Instituto "Nicolás Cabrera" and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Francisco Guinea
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jose Angel Silva-Guillén
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Miguel A Valbuena
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
6
|
Castrillo-Bodero R, Blanco-Rey M, Ali K, Ortega JE, Schiller F, Fernández L. Tuning the carrier injection barrier of hybrid metal-organic interfaces on rare earth-gold surface compounds. NANOSCALE 2023; 15:4090-4100. [PMID: 36744853 DOI: 10.1039/d2nr06440e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic hybrid metal-organic interfaces possess a great potential in areas such as organic spintronics and quantum information processing. However, tuning their carrier injection barriers on-demand is fundamental for the implementation in technological devices. We have prepared hybrid metal-organic interfaces by the adsorption of copper phthalocyanine CuPc on REAu2 surfaces (RE = Gd, Ho and Yb) and studied their growth, electrostatics and electronic structure. CuPc exhibits a long-range commensurability and a vacuum level pinning of the molecular energy levels. We observe a significant effect of the RE valence of the substrate on the carrier injection barrier of the hybrid metal-organic interface. CuPc adsorbed on trivalent RE-based surfaces (HoAu2 and GdAu2) exhibits molecular level energies that may allow injection carriers significantly closer to an ambipolar injection behavior than in the divalent case (YbAu2).
Collapse
Affiliation(s)
- R Castrillo-Bodero
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
| | - M Blanco-Rey
- Universidad del País Vasco UPV/EHU, Dpto. de Polímeros y Materiales Avanzados: Física, Química y Tecnología, 20018 San Sebastián, Spain
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - K Ali
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
- Chalmers University of Technology, Chalmersplatsen 4, Götenborg, 41296, Sweden
| | - J E Ortega
- Universidad del País Vasco UPV/EHU, Dpto. Física Aplicada I, 20018 San Sebastián, Spain
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - F Schiller
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - L Fernández
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
| |
Collapse
|
7
|
Mihalyuk AN, Gruznev DV, Bondarenko LV, Tupchaya AY, Vekovshinin YE, Eremeev SV, Zotov AV, Saranin AA. A 2D heavy fermion CePb 3 kagome material on silicon: emergence of unique spin polarized states for spintronics. NANOSCALE 2022; 14:14732-14740. [PMID: 36172823 DOI: 10.1039/d2nr04280k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report on the successful synthesis of a 2D atomically thin heavy-fermion CePb3 kagome compound on a Si(111) surface. Growth and morphology were controlled and characterized through scanning tunneling microscopy observations revealing the high crystalline quality of the sample. Angle-resolved photoelectron spectroscopy measurements revealed the giant highly-anisotropic Rashba-like spin splitting of the surface states and semi-metallic character of the spectrum. According to the DFT calculations, the occupied hole and unoccupied electron states with huge spin-orbit splitting and out-of-plane spin polarization reside at the M̄ points near the Fermi level EF, which is ≈100 meV above the experimental one. The out-of-plane FM magnetization was found to be preferred with Ce spin and orbital magnetic momenta values of 0.895μB and -0.840μB, respectively. The spin-split states near EF are primarily formed by Pb pxy orbitals with the admixing of Ce d and f electrons due to the Ce f-d hybridization acquired asymmetry with respect to the sign of k∥. The observed electronic structure of the CePb3/Si(111)√3 × √3 system is rather unique and in the hole-doped state, like in our experiment, can be enabled in the tunable spin current regime, which makes it a prospective 2D material for spintronic applications.
Collapse
Affiliation(s)
- Alexey N Mihalyuk
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 690950 Vladivostok, Russia
| | - Dimitry V Gruznev
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Leonid V Bondarenko
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Alexandra Y Tupchaya
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Yuriy E Vekovshinin
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Sergey V Eremeev
- Institute of Strength Physics and Materials Science, Tomsk 634055, Russia
| | - Andrey V Zotov
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| | - Alexander A Saranin
- Institute of Automation and Control Processes FEB RAS, 690041 Vladivostok, Russia.
| |
Collapse
|