1
|
Wang M, Shu J, Wang Y, Zhang W, Zheng K, Zhou S, Yang D, Cui H. Ultrasensitive PD-L1-Expressing Exosome Immunosensors Based on a Chemiluminescent Nickel-Cobalt Hydroxide Nanoflower for Diagnosis and Classification of Lung Adenocarcinoma. ACS Sens 2024; 9:3444-3454. [PMID: 38847105 DOI: 10.1021/acssensors.4c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Programmed death ligand-1 (PD-L1)-expressing exosomes are considered a potential marker for diagnosis and classification of lung adenocarcinoma (LUAD). There is an urgent need to develop highly sensitive and accurate chemiluminescence (CL) immunosensors for the detection of PD-L1-expressing exosomes. Herein, N-(4-aminobutyl)-N-ethylisopropanol-functionalized nickel-cobalt hydroxide (NiCo-DH-AA) with a hollow nanoflower structure as a highly efficient CL nanoprobe was synthesized using gold nanoparticles as a "bridge". The resulting NiCo-DH-AA exhibited a strong and stable CL emission, which was ascribed to the exceptional catalytic capability and large specific surface area of NiCo-DH, along with the capacity of AuNPs to facilitate free radical generation. On this basis, an ultrasensitive sandwich CL immunosensor for the detection of PD-L1-expressing exosomes was constructed by using PD-L1 antibody-modified NiCo-DH-AA as an effective signal probe and rabbit anti-CD63 protein polyclonal antibody-modified carboxylated magnetic bead as a capture platform. The immunosensor demonstrated outstanding analytical performance with a wide detection range of 4.75 × 103-4.75 × 108 particles/mL and a low detection limit of 7.76 × 102 particles/mL, which was over 2 orders of magnitude lower than the reported CL method for detecting PD-L1-expressing exosomes. Importantly, it was able to differentiate well not only between healthy persons and LUAD patients (100% specificity and 87.5% sensitivity) but also between patients with minimally invasive adenocarcinoma and invasive adenocarcinoma (92.3% specificity and 52.6% sensitivity). Therefore, this study not only presents an ultrasensitive and accurate diagnostic method for LUAD but also offers a novel, simple, and noninvasive approach for the classification of LUAD.
Collapse
Affiliation(s)
- Manli Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangnan Shu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yisha Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wencan Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Keying Zheng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengnian Zhou
- The Second Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui 230022, China
| | - Dongliang Yang
- The Second Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui 230022, China
| | - Hua Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Muñoz J. Rational Design of Stimuli-Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule-Programmable Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305546. [PMID: 37906953 DOI: 10.1002/adma.202305546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The ability of electronic devices to act as switches makes digital information processing possible. Succeeding graphene, emerging inorganic 2D materials (i2DMs) have been identified as alternative 2D materials to harbor a variety of active molecular components to move the current silicon-based semiconductor technology forward to a post-Moore era focused on molecule-based information processing components. In this regard, i2DMs benefits are not only for their prominent physiochemical properties (e.g., the existence of bandgap), but also for their high surface-to-volume ratio rich in reactive sites. Nonetheless, since this field is still in an early stage, having knowledge of both i) the different strategies for molecularly functionalizing the current library of i2DMs, and ii) the different types of active molecular components is a sine qua non condition for a rational design of stimuli-responsive i2DMs capable of performing logical operations at the molecular level. Consequently, this Review provides a comprehensive tutorial for covalently anchoring ad hoc molecular components-as active units triggered by different external inputs-onto pivotal i2DMs to assess their role in the expanding field of molecule-programmable nanoelectronics for electrically monitoring bistable molecular switches. Limitations, challenges, and future perspectives of this emerging field which crosses materials chemistry with computation are critically discussed.
Collapse
Affiliation(s)
- Jose Muñoz
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
3
|
Liu H, Jin Q, Meng L, Gu H, Liang X, Fan Y, Li Z, Zhang F, Rong H, Zhang J. Cu-based catalysts with the co-existence of single atoms and nanoparticles for basic electrocatalytic oxygen reduction reaction. NANOSCALE 2023; 15:13459-13465. [PMID: 37548298 DOI: 10.1039/d3nr01810e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Developing efficient and stable oxygen reduction reaction (ORR) catalysts to replace the precious Pt/C is very important for the industrial application of proton-exchange membrane fuel cells. Herein, using bismuth-based metal-organic frameworks as the substrate to disperse copper ions, we prepared a catalyst containing both Cu single atoms and Cu nanoparticles (CuSACuNP/BiCN) by a pyrolysis method. In 0.1 M KOH electrolyte, the electrocatalytic ORR performance of CuSACuNP/BiCN was superior to that of commercial Pt/C. With a hierarchical porous architecture, CuSACuNP/BiCN displayed a half-wave potential of 0.86 V vs. RHE and a diffusion-limiting current density of 5.82 mA cm-2 with a four-electron transfer process. In addition, it was stable during a 12-hour durability test. This study provides guidance for the synthesis of advanced Cu-based nano-single-atom catalytic materials for ORR applications.
Collapse
Affiliation(s)
- Huimin Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Qiong Jin
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Lingzhe Meng
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Hongfei Gu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Fan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Zhi Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jiatao Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
4
|
Wan H, Hu L, Liu X, Zhang Y, Chen G, Zhang N, Ma R. Advanced hematite nanomaterials for newly emerging applications. Chem Sci 2023; 14:2776-2798. [PMID: 36937591 PMCID: PMC10016337 DOI: 10.1039/d3sc00180f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Because of the combined merits of rich physicochemical properties, abundance, low toxicity, etc., hematite (α-Fe2O3), one of the most chemically stable compounds based on the transition metal element iron, is endowed with multifunctionalities and has steadily been a research hotspot for decades. Very recently, advanced α-Fe2O3 materials have also been developed for applications in some cutting-edge fields. To reflect this trend, the latest progress in developing α-Fe2O3 materials for newly emerging applications is reviewed with a particular focus on the relationship between composition/nanostructure-induced electronic structure modulation and practical performance. Moreover, perspectives on the critical challenges as well as opportunities for future development of diverse functionalities are also discussed. We believe that this timely review will not only stimulate further increasing interest in α-Fe2O3 materials but also provide a profound understanding and insight into the rational design of other materials based on transition metal elements for various applications.
Collapse
Affiliation(s)
- Hao Wan
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 PR China
| | - Linfeng Hu
- School of Materials Science and Engineering, Southeast University Nanjing 211189 P. R. China
| | - Xiaohe Liu
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 PR China
- School of Materials Science and Engineering, Central South University Changsha 410083 PR China
| | - Ying Zhang
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 PR China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University Changsha 410083 PR China
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University Changsha 410083 PR China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Namiki 1-1, Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
5
|
Li Z, He C, Zhou X, Wang L, Zhang Y, Feng G, Fang J. FeOOH nanosheet assisted metal ion coordination with porphyrins for rapid detection and removal of cadmium ions in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4947-4955. [PMID: 36426755 DOI: 10.1039/d2ay01508k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excessive cadmium ions in water bodies pose a severe challenge to ecology and human health, and the development of cadmium metal ion sensors is imperative. Here, we showed a dual-signal sensor based on colorimetry and fluorescence that was self-assembled from FeOOH nanosheets and TMPyP4. This nanocomposite enabled quick, selective cadmium ion detection. The Soret band at 442 nm in the UV absorption spectrum represented the coordination of cadmium ions with FeOOH@TMPyP4, and the absorbance increased linearly with increasing cadmium ion concentration (R2 = 0.989 and linear range: 0.5-10 μM). In the presence of FeOOH nanosheets, the coordination of cadmium ions with FeOOH@TMPyP4 took only 70 min, and the detection limit of cadmium ions was as low as 0.24 μM. In addition, Cd2+ could be effectively removed from the nanocomposite due to its easy separation from water. This research developed a simple and efficient approach for detecting and removing heavy metal ions from water bodies.
Collapse
Affiliation(s)
- Zheng Li
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Chang He
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Xiangming Zhou
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Lixiang Wang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying Zhang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
6
|
Wang M, Wu Y, Li X, Wang Y, Wu X, Li G, Yang L, Lin Y. Achieving a highly efficient oxygen reduction reaction via a molecular Fe single atom catalyst. NANOSCALE 2022; 14:8255-8259. [PMID: 35642926 DOI: 10.1039/d2nr01326f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular Fe phthalocyanine (FePc) is successfully anchored on a defective mesoporous carbon framework for the highly efficient oxygen reduction reaction (ORR) with a half-wave potential of 0.86 V (vs. RHE) and a limited current density of 5.40 mA cm-2. DFT calculations further suggest that the non-planar structure incorporating FePc can promote charge polarization and decrease the energy barrier.
Collapse
Affiliation(s)
- Ming Wang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Yuxuan Wu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Xiaoyu Li
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Yange Wang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Xingshun Wu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Guang Li
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Li Yang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Yunxiang Lin
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Anhui Key Laboratory of Information Materials and Device, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
7
|
Gong Y, Xu Y, Que Y, Xu X, Tang Y, Ye D, Zhao H, Zhang J. Prussian blue analogues derived electrocatalyst with multicatalytic centers for boosting oxygen reduction reaction in the wide pH range. J Colloid Interface Sci 2022; 612:639-649. [PMID: 35026569 DOI: 10.1016/j.jcis.2021.12.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022]
Abstract
Due to the complex of oxygen reduction reaction (ORR), designing catalysts with multicatalytic centers is considered as a promising way for boosting the ORR. Herein, a multicatalytic centers electrocatalyst Fe3C/Mn3O4 encased by N-doped graphitic layers (FeMn PDA-900) is synthesized using iron manganese Prussian blue analogues and dopamine as the precursor. It exhibits a half-wave potential (E1/2) of 0.86 V for ORR and yields of H2O2 lower than 5% in 0.1 M KOH. Moreover, the prepared catalyst has also shown high catalytic ORR performance in both acidic and neutral electrolyte solutions, which exhibits the potential application in both the proton exchange membrane fuel cell and the microbial electrolysis cell. It is found that the good performance can be well explained by proton-coupled electron transfer mechanism due to the multicatalytic centers from Fe-Nx, Fe3C and Mn3O4 for providing enough active sites at the same time and the N-doped graphitic layers as a bridge for facilitating the electron transfer between the interfaces of Fe3C/Mn3O4 nanoparticles, which paves the way for protons and electrons transfer simultaneously and rapidly, and thus lowing the energy barrier and facilitating the ORR process. Therefore, FeMn PDA-900 is a promising candidate to replace precious metal-based ORR electrocatalysts at the whole pH range.
Collapse
Affiliation(s)
- Yanmei Gong
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Yuan Xu
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Yipeng Que
- Chilwee Group Co., Ltd, Huzhou 313100, PR China
| | - Xueliang Xu
- Chilwee Group Co., Ltd, Huzhou 313100, PR China
| | - Ya Tang
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Daixin Ye
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China.
| | - Hongbin Zhao
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China.
| | - Jiujun Zhang
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| |
Collapse
|
8
|
Zhai Z, Yan W, Zhang J. Layered FeCoNi double hydroxides with tailored surface electronic configurations induced by oxygen and unsaturated metal vacancies for boosting the overall water splitting process. NANOSCALE 2022; 14:4156-4169. [PMID: 35229091 DOI: 10.1039/d2nr00143h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) layered double hydroxides (LDH) with excellent hydrophilic ability and rapid hydroxyl insertion are regarded as one of the most promising electrocatalysts for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) for overall water splitting to produce hydrogen. However, the electrocatalytic HER/OER activities can be restricted by the inert basal plane due to the poor conductivity, deficient active sites and inferior durability despite there being efficient active sites in the material edge. Thus, capturing many more exposed reactive sites to facilitate the rapid reaction kinetics is a crucial strategy. In this paper, both oxygen and unsaturated metal vacancies with FeCoNi LDH materials are generated through a surface activation approach by pre-covering of fluoride and a post-boronizing process. Such a material is grown on Ni foam to form an F-FeCoNi-Ov LDH/NF electrocatalyst. The activated surface of the electrocatalyst with oxygen vacancies and unsaturated metal sites shows enhanced electroconductivity for regulating the surface electronic structure and optimizing the surface adsorption energy for intermediates during HER/OER processes. As a result, this electrocatalyst exhibits excellent electrocatalytic performance for both the HER and OER with low overpotentials, small Tafel slopes and long durability. The enhancement mechanism is also studied deeply for fundamental understanding. For performance validation, an F-FeCoNi-Ov LDH/NF∥F-FeCoNi-Ov LDH/NF water splitting cell is fabricated and needs only 1.54 V and 1.81 V to reach current densities of 10 and 100 mA cm-2, respectively. This work provides a practicable strategy to develop 2D LDH nanomaterials with boosted electrocatalytic activity for sustainable and clean energy storage systems.
Collapse
Affiliation(s)
- Zibo Zhai
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, China 200444
| | - Wei Yan
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, China 200444
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, China 200444
| |
Collapse
|
9
|
Bera MK, Mohanty S, Kashyap SS, Sarmah S. Electrochromic coordination nanosheets: Achievements and future perspective. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Ge L, Shao B, Liang Q, Huang D, Liu Z, He Q, Wu T, Luo S, Pan Y, Zhao C, Huang J, Hu Y. Layered double hydroxide based materials applied in persulfate based advanced oxidation processes: Property, mechanism, application and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127612. [PMID: 34838358 DOI: 10.1016/j.jhazmat.2021.127612] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 05/24/2023]
Abstract
Recently, persulfate-based advanced oxidation processes (persulfate-AOPs) are booming rapidly due to their promising potential in treating refractory contaminants. As a type of popular two-dimensional material, layered double hydroxides (LDHs) are widely used in energy conversion, medicine, environment remediation and other fields for the advantages of high specific surface area (SSA), good tunability, biocompatibility and facile fabrication. These excellent physicochemical characteristics may enable LDH-based materials to be promising catalysts in persulfate-AOPs. In this work, we make a summary of LDHs and their composites in persulfate-AOPs from different aspects. Firstly, we introduce different structure and important properties of LDH-based materials briefly. Secondly, various LDH-based materials are classified according to the type of foreign materials (metal or carbonaceous materials, mainly). Latterly, we discuss the mechanisms of persulfate activation (including radical pathway and nonradical pathway) by these catalysts in detail, which involve (i) bimetallic synergism for radical generation, (ii) the role of carbonaceous materials in radical generation, (iii) singlet oxygen (1O2) production and several special nonradical mechanisms. In addition, the catalytic performance of LDH-based catalysts for contaminants are also summarized. Finally, challenges and future prospects of LDH-based composites in environmental remediation are proposed. We expect this review could bring new insights for the development of LDH-based catalyst and exploration of reaction mechanism.
Collapse
Affiliation(s)
- Lin Ge
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Chenhui Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Yumeng Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| |
Collapse
|
11
|
Zhou Y, Abazari R, Chen J, Tahir M, Kumar A, Ikreedeegh RR, Rani E, Singh H, Kirillov AM. Bimetallic metal–organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214264] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Zhao L, Lan Z, Mo W, Su J, Liang H, Yao J, Yang W. High-Level Oxygen Reduction Catalysts Derived from the Compounds of High-Specific-Surface-Area Pine Peel Activated Carbon and Phthalocyanine Cobalt. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3429. [PMID: 34947778 PMCID: PMC8707579 DOI: 10.3390/nano11123429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Non-platinum carbon-based catalysts have attracted much more attention in recent years because of their low cost and outstanding performance, and are regarded as one of the most promising alternatives to precious metal catalysts. Activated carbon (AC), which has a large specific surface area (SSA), can be used as a carrier or carbon source at the same time. In this work, stable pine peel bio-based materials were used to prepare large-surface-area activated carbon and then compound with cobalt phthalocyanine (CoPc) to obtain a high-performance cobalt/nitrogen/carbon (Co-N-C) catalyst. High catalytic activity is related to increasing the number of Co particles on the large-specific-area activated carbon, which are related with the immersing effect of CoPc into the AC and the rational decomposed temperature of the CoPc ring. The synergy with N promoting the exposure of CoNx active sites is also important. The Eonset of the catalyst treated with a composite proportion of AC and CoPc of 1 to 2 at 800 °C (AC@CoPc-800-1-2) is 1.006 V, higher than the Pt/C (20 wt%) catalyst. Apart from this, compared with other AC/CoPc series catalysts and Pt/C (20 wt%) catalyst, the stability of AC/CoPc-800-1-2 is 87.8% in 0.1 M KOH after 20,000 s testing. Considering the performance and price of the catalyst in a practical application, these composite catalysts combining biomass carbon materials with phthalocyanine series could be widely used in the area of catalysts and energy storage.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Physical Science and Technology, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.M.); (J.S.); (H.L.); (J.Y.)
| | - Ziwei Lan
- Department of Physical Science and Technology, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.M.); (J.S.); (H.L.); (J.Y.)
| | - Wenhao Mo
- Department of Physical Science and Technology, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.M.); (J.S.); (H.L.); (J.Y.)
| | - Junyu Su
- Department of Physical Science and Technology, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.M.); (J.S.); (H.L.); (J.Y.)
| | - Huazhu Liang
- Department of Physical Science and Technology, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.M.); (J.S.); (H.L.); (J.Y.)
| | - Jiayu Yao
- Department of Physical Science and Technology, Lingnan Normal University, Zhanjiang 524048, China; (Z.L.); (W.M.); (J.S.); (H.L.); (J.Y.)
| | - Wenhu Yang
- School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
13
|
Liu M, Wen Y, Lu L, Kang Q, Xie Z, Chen Y, Tian X, Jin H, Liu J. A Cost‐Effective Iron Based Covalent Organic Framework and Its Composite Electrocatalyst for Active and Stable Oxygen Reduction Reaction in Alkaline Solution. ChemElectroChem 2021. [DOI: 10.1002/celc.202100627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Muye Liu
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Yue Wen
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Luhua Lu
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
- Zhejiang institute China University of Geosciences Wuhan Hangzhou 6 Heting Street 311305 P. R. China
| | - Qi Kang
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Zhicheng Xie
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Ying Chen
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Xiaocong Tian
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Hongyun Jin
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 388 Lumo Road Wuhan 430074 P.R.China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials College of Chemistry and Chemical Engineering Inner Mongolia University for Nationalities Tongliao 536 Huolinhe Street West 028000 P. R. China
| |
Collapse
|
14
|
Kiani M, Tian XQ, Zhang W. Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213954] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|