1
|
Ashok D, Singh J, Howard HR, Cottam S, Waterhouse A, Bilek MMM. Interfacial engineering for biomolecule immobilisation in microfluidic devices. Biomaterials 2025; 316:123014. [PMID: 39708778 DOI: 10.1016/j.biomaterials.2024.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Microfluidic devices are used for various applications in biology and medicine. From on-chip modelling of human organs for drug screening and fast and straightforward point-of-care (POC) detection of diseases to sensitive biochemical analysis, these devices can be custom-engineered using low-cost techniques. The microchannel interface is essential for these applications, as it is the interface of immobilised biomolecules that promote cell capture, attachment and proliferation, sense analytes and metabolites or provide enzymatic reaction readouts. However, common microfluidic materials do not facilitate the stable immobilisation of biomolecules required for relevant applications, making interfacial engineering necessary to attach biomolecules to the microfluidic surfaces. Interfacial engineering is performed through various immobilisation mechanisms and surface treatment techniques, which suitably modify the surface properties like chemistry and energy to obtain robust biomolecule immobilisation and long-term storage stability suitable for the final application. In this review, we provide an overview of the status of interfacial engineering in microfluidic devices, covering applications, the role of biomolecules, their immobilisation pathways and the influence of microfluidic materials. We then propose treatment techniques to optimise performance for various biological and medical applications and highlight future areas of development.
Collapse
Affiliation(s)
- Deepu Ashok
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; Heart Research Institute, Newtown, NSW, 2042, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jasneil Singh
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; Heart Research Institute, Newtown, NSW, 2042, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Henry Robert Howard
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sophie Cottam
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Anna Waterhouse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Marcela M M Bilek
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Zhao H, Zhang Y, Hua D. A Review of Research Progress in Microfluidic Bioseparation and Bioassay. MICROMACHINES 2024; 15:893. [PMID: 39064404 PMCID: PMC11278910 DOI: 10.3390/mi15070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
With the rapid development of biotechnology, the importance of microfluidic bioseparation and bioassay in biomedicine, clinical diagnosis, and other fields has become increasingly prominent. Microfluidic technology, with its significant advantages of high throughput, automated operation, and low sample consumption, has brought new breakthroughs in the field of biological separation and bioassay. In this paper, the latest research progress in microfluidic technology in the field of bioseparation and bioassay is reviewed. Then, we focus on the methods of bioseparation including active separation, passive separation, and hybrid separation. At the same time, the latest research results of our group in particle separation are introduced. Finally, some application examples or methods for bioassay after particle separation are listed, and the current challenges and future prospects of bioseparation and bioassay are discussed.
Collapse
Affiliation(s)
| | | | - Dengxin Hua
- Center for Lidar Remote Sensing Research, School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China.; (H.Z.); (Y.Z.)
| |
Collapse
|
3
|
Hazra RS, Kale N, Boyle C, Molina KB, D'Souza A, Aland G, Jiang L, Chaturvedi P, Ghosh S, Mallik S, Khandare J, Quadir M. Magnetically-activated, nanostructured cellulose for efficient capture of circulating tumor cells from the blood sample of head and neck cancer patients. Carbohydr Polym 2024; 323:121418. [PMID: 37940250 DOI: 10.1016/j.carbpol.2023.121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023]
Abstract
In this report, the relative efficiency of cellulose nanocrystals (CNCs) and nanofibers (CNFs) to capture circulating tumor cells (CTCs) from the blood sample of head and neck cancer (HNC) patients was evaluated. Detection and enumeration of CTCs are critical for monitoring cancer progression. Both types of nanostructured cellulose were chemically modified with Epithelial Cell Adhesion Molecule (EpCAM) antibody and iron oxide nanoparticles. The EpCAM antibody facilitated the engagement of CTCs, promoting entrapment within the cellulose cage structure. Iron oxide nanoparticles, on the other hand, rendered the cages activatable via the use of a magnet for the capture and separation of entrapped CTCs. The efficiency of the network structures is shown in head and neck cancer (HNC) patients' blood samples. It was observed that the degree of chemical functionalization of hydroxyl groups located within the CNCs or CNFs with anti-EpCAM determined the efficiency of the system's interaction with CTCs. Further, our result indicated that inflexible scaffolds of nanocrystals interacted more efficiently with CTCs than that of the fibrous CNF scaffolds. Network structures derived from CNCs demonstrated comparable CTC capturing efficiency to commercial standard, OncoDiscover®. The output of the work will provide the chemical design principles of cellulosic materials intended for constructing affordable platforms for monitoring cancer progression in 'real time'.
Collapse
Affiliation(s)
- Raj Shankar Hazra
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA; Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA
| | - Narendra Kale
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA; Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108, ND, USA
| | - Camden Boyle
- Department of Engineering and Technology, Southeast Missouri State University, One University Plaza, MS6825, Cape Girardeau, MO 63701, USA
| | - Kayla B Molina
- Department of Biomedical Engineering, The University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Alain D'Souza
- Actorius Innovations and Research, Pune, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA
| | - Gourishankar Aland
- Actorius Innovations and Research, Pune, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA
| | - Long Jiang
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, USA
| | - Pankaj Chaturvedi
- Department of Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Santaneel Ghosh
- Department of Engineering and Technology, Southeast Missouri State University, One University Plaza, MS6825, Cape Girardeau, MO 63701, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108, ND, USA
| | - Jayant Khandare
- Actorius Innovations and Research, Pune, India; School of Pharmacy, Dr. Vishwananth Karad MIT World Peace University, Pune 411038, India; School of Consciousness, Dr. Vishwananth Karad MIT World Peace University, Pune 411038, India; Actorius Innovations and Research, Simi Valley, CA 93063, USA.
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo 58108, ND, USA.
| |
Collapse
|
4
|
Verma S, Khanna V, Kumar S, Kumar S. The Art of Building Living Tissues: Exploring the Frontiers of Biofabrication with 3D Bioprinting. ACS OMEGA 2023; 8:47322-47339. [PMID: 38144142 PMCID: PMC10734012 DOI: 10.1021/acsomega.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 12/26/2023]
Abstract
The scope of three-dimensional printing is expanding rapidly, with innovative approaches resulting in the evolution of state-of-the-art 3D bioprinting (3DbioP) techniques for solving issues in bioengineering and biopharmaceutical research. The methods and tools in 3DbioP emphasize the extrusion process, bioink formulation, and stability of the bioprinted scaffold. Thus, 3DbioP technology augments 3DP in the biological world by providing technical support to regenerative therapy, drug delivery, bioengineering of prosthetics, and drug kinetics research. Besides the above, drug delivery and dosage control have been achieved using 3D bioprinted microcarriers and capsules. Developing a stable, biocompatible, and versatile bioink is a primary requisite in biofabrication. The 3DbioP research is breaking the technical barriers at a breakneck speed. Numerous techniques and biomaterial advancements have helped to overcome current 3DbioP issues related to printability, stability, and bioink formulation. Therefore, this Review aims to provide an insight into the technical challenges of bioprinting, novel biomaterials for bioink formulation, and recently developed 3D bioprinting methods driving future applications in biofabrication research.
Collapse
Affiliation(s)
- Saurabh Verma
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Vikram Khanna
- Department
of Oral Medicine and Radiology, King George’s
Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Smita Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Sumit Kumar
- Department
of Health Research-Multi-Disciplinary Research Unit, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| |
Collapse
|
5
|
Gong L, Cretella A, Lin Y. Microfluidic systems for particle capture and release: A review. Biosens Bioelectron 2023; 236:115426. [PMID: 37276636 DOI: 10.1016/j.bios.2023.115426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Microfluidic technology has emerged as a promising tool in various applications, including biosensing, disease diagnosis, and environmental monitoring. One of the notable features of microfluidic devices is their ability to selectively capture and release specific cells, biomolecules, bacteria, and particles. Compared to traditional bulk analysis instruments, microfluidic capture-and-release platforms offer several advantages, such as contactless operation, label-free detection, high accuracy, good sensitivity, and minimal reagent requirements. However, despite significant efforts dedicated to developing innovative capture mechanisms in the past, the release and recovery efficiency of trapped particles have often been overlooked. Many previous studies have focused primarily on particle capture techniques and their efficiency, disregarding the crucial role of successful particle release for subsequent analysis. In reality, the ability to effectively release trapped particles is particularly essential to ensure ongoing, high-throughput analysis. To address this gap, this review aims to highlight the importance of both capture and release mechanisms in microfluidic systems and assess their effectiveness. The methods are classified into two categories: those based on physical principles and those using biochemical approaches. Furthermore, the review offers a comprehensive summary of recent applications of microfluidic platforms specifically designed for particle capture and release. It outlines the designs and performance of these devices, highlighting their advantages and limitations in various target applications and purposes. Finally, the review concludes with discussions on the current challenges faced in the field and presents potential future directions.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Andrew Cretella
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
6
|
Damiati LA, El-Yaagoubi M, Damiati SA, Kodzius R, Sefat F, Damiati S. Role of Polymers in Microfluidic Devices. Polymers (Basel) 2022; 14:5132. [PMID: 36501526 PMCID: PMC9738615 DOI: 10.3390/polym14235132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Polymers are sustainable and renewable materials that are in high demand due to their excellent properties. Natural and synthetic polymers with high flexibility, good biocompatibility, good degradation rate, and stiffness are widely used for various applications, such as tissue engineering, drug delivery, and microfluidic chip fabrication. Indeed, recent advances in microfluidic technology allow the fabrication of polymeric matrix to construct microfluidic scaffolds for tissue engineering and to set up a well-controlled microenvironment for manipulating fluids and particles. In this review, polymers as materials for the fabrication of microfluidic chips have been highlighted. Successful models exploiting polymers in microfluidic devices to generate uniform particles as drug vehicles or artificial cells have been also discussed. Additionally, using polymers as bioink for 3D printing or as a matrix to functionalize the sensing surface in microfluidic devices has also been mentioned. The rapid progress made in the combination of polymers and microfluidics presents a low-cost, reproducible, and scalable approach for a promising future in the manufacturing of biomimetic scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biology, Collage of Science, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Marwa El-Yaagoubi
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Safa A. Damiati
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rimantas Kodzius
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Farshid Sefat
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Samar Damiati
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Li M, Liu J, Wang X, Wang J, Huang LH, Gao M, Zhang X. Facile Preparation of Three-Dimensional Wafer with Interconnected Porous Structure for High-Performance Capture and Nondestructive Release of Circulating Tumor Cells. Anal Chem 2022; 94:15076-15084. [PMID: 36265544 DOI: 10.1021/acs.analchem.2c03137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient isolation and downstream bioinformation analysis of circulating tumor cells (CTCs) in whole blood contribute to the early diagnosis of cancer and investigation of cancer metastasis. However, the separation and release of CTCs remain a great challenge due to the extreme rarity of CTCs and severe interference from other cells in complex clinical samples. Herein, we developed a low-cost and easy-to-fabricate aptamer-functionalized wafer with a three-dimensional (3D) interconnected porous structure by grafting polydopamine (PDA), poly(ethylene glycol) (PEG), and aptamer in sequence (Ni@PDA-PEG-Apt) for the capture and release of CTCs. The Ni@PDA-PEG-Apt wafer integrated the features of Ni foam with a 3D interconnected porous structure offering enough tunnels for cells to flow through and enhancing aptamer-cell contact frequency, the spacer PEG with flexible and high hydrophilic property increasing anti-interference ability and providing the wafer with more binding sites for aptamer, which result in an enhanced capture specificity and efficiency for CTCs. Because of these advantages, the Ni@PDA-PEG-Apt wafer achieved a high capture efficiency of 78.25%. The captured cancer cells were mildly released by endonuclease with up to 61.85% efficiency and good proliferation. Furthermore, tumor cells were injected into mice and experienced circulation in vivo. In blood samples after circulation, 65% of target tumor cells can be efficiently captured by the wafer, followed by released and recultured cells with high viability. Further downstream metabolomics analysis showed that target cancer cells remained with high biological activity and can be well separated from MCF-10A cells based on metabolic profiles by the PCA analysis, indicating the great potential of our strategy for further research on the progression of cancer metastasis. Notably, not only is the wafer cheap with a cost of only 3.58 U.S. dollars and easily prepared by environmental-friendly reagents but also the process of capturing and releasing tumor cells can be completed within an hour, which is beneficial for large-scale clinical use in the future.
Collapse
Affiliation(s)
- Mengran Li
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Jia Liu
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Xuantang Wang
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Jiaxi Wang
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Li-Hao Huang
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Aljadi Z, Aval NA, Kumar T, Qin T, Ramachandraiah H, Pettersson T, Russom A. Layer-by-Layer Cellulose Nanofibrils: A New Coating Strategy for Development and Characterization of Tumor Spheroids as a Model for In-Vitro Anti-Cancer Drug Screening. Macromol Biosci 2022; 22:e2200137. [PMID: 35899862 DOI: 10.1002/mabi.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Three-dimensional multicellular spheroids (MCSs) are complex structure of cellular aggregates and cell-to-matrix interaction that emulates the in-vivo microenvironment. This research field has progressively grown to develop and improve spheroid generation techniques. Here, we present a new platform for spheroid generation using Layer-by-Layer (LbL) technology. Layer-by-Layer (LbL) containing cellulose nanofibrils (CNF) assemble on a standard 96 well plate. Various LbL assembly parameters, multiple cell seeding concentration, and two tumor cell lines (HEK 293 T, HCT 116) are utilized to generate and characterize spheroids. The number and the proliferation of generated spheroids in correlation to the number of LbL-CNF bi-layers, the viability, and the response to the anti-cancer drug are examined. The spheroids are formed and proliferated on the LbL-CNF coated wells with no significant difference in connection to the number of LbL-CNF bi-layers; however, the number of formed spheroids correlates positively with the cell seeding concentration (122 ± 17) for HCT 116 and (42 ± 8) for HEK 293T cell lines at 700 cells ml-1 . The generated spheroids proliferate progressively up to (309, 663) μm of HCT 116 and HEK 293T cell lines on the 5 bi-layers coated wells respectively overtime with maintaining viability. The (HCT 116) spheroids react to the anti-cancer drug. We demonstrate a new platform (LbL-CNF) coating strategy for spheroids generation, with high performance and efficiency to test anti-cancer drugs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zenib Aljadi
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Negar Abbasi Aval
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tharagan Kumar
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Taoyu Qin
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Harisha Ramachandraiah
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Torbjörn Pettersson
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Aman Russom
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
9
|
Zitzmann FL, Ward E, Matharu AS. Use of Carbotrace 480 as a Probe for Cellulose and Hydrogel Formation from Defibrillated Microalgae. Gels 2022; 8:gels8060383. [PMID: 35735727 PMCID: PMC9222329 DOI: 10.3390/gels8060383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Carbotrace 480 is a commercially available fluorescent optotracer that specifically binds to cellulose’s glycosidic linkages. Herein, the use of Carbotrace 480 is reported as an analytical tool for linking cellulose content to hydrogel formation capability in defibrillated celluloses obtained from proprietary microalgae. Defibrillated celluloses obtained from acid-free hydrothermal microwave processing at low temperature (160 °C) showed poor hydrogel formation attributed to a low cellulose concentration as evidenced through the lack of Carbotrace fluorescence. High temperature (220 °C) processing afforded reasonable gels commensurate with a higher cellulose loading and stronger response to Carbotrace.
Collapse
|