1
|
Xia S, Wu F, Liu Q, Gao W, Guo C, Wei H, Hussain A, Zhang Y, Xu G, Niu W. Steering the Selective Production of Glycolic Acid by Electrocatalytic Oxidation of Ethylene Glycol with Nanoengineered PdBi-Based Heterodimers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400939. [PMID: 38618653 DOI: 10.1002/smll.202400939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/30/2024] [Indexed: 04/16/2024]
Abstract
Heterodimers of metal nanocrystals (NCs) with tailored elemental distribution have emerged as promising candidates in the field of electrocatalysis, owing to their unique structures featuring heterogeneous interfaces with distinct components. Despite this, the rational synthesis of heterodimer NCs with similar elemental composition remains a formidable challenge, and their impact on electrocatalysis has remained largely elusive. In this study, Pd@Bi-PdBi heterodimer NCs are synthesized through an underpotential deposition (UPD)-directed growth pathway. In this pathway, the UPD of Bi promotes a Volmer-Weber growth mode, allowing for judicious modulation of core-satellite to heterodimer structures through careful control of supersaturation and growth kinetics. Significantly, the heterodimer NCs are employed in the electrocatalytic process of ethylene glycol (EG) with high activity and selectivity. Compared with pristine Pd octahedra and common PdBi alloy NC, the unique heterodimer structure of the Pd@Bi-PdBi heterodimer NCs endows them with the highest electrocatalytic performance of EG and the best selectivity (≈93%) in oxidizing EG to glycolic acid (GA). Taken together, this work not only heralds a new strategy for UPD-directed synthesis of bimetallic NCs, but also provides a new design paradigm for steering the selectivity of electrocatalysts.
Collapse
Affiliation(s)
- Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qixin Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenping Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chenxi Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Haili Wei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yue Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Yao Q, Yu Z, Li L, Huang X. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem Rev 2023; 123:9676-9717. [PMID: 37428987 DOI: 10.1021/acs.chemrev.3c00252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.
Collapse
Affiliation(s)
- Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Zhang YP, Su ZX, Wei HH, Wang ZQ, Gong XQ. Strategies to Improve the Oxygen Reduction Reaction Activity on Pt-Bi Bimetallic Catalysts: A Density Functional Theory Study. J Phys Chem Lett 2023; 14:1990-1998. [PMID: 36815311 DOI: 10.1021/acs.jpclett.2c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Decreasing the level of use of Pt in proton exchange membrane fuel cells is of great research interest both academically and industrially. In this work, we systematically studied the oxygen reduction reaction (ORR) following the four-electron association mechanism at various Pt-Bi surfaces with density functional theory calculations. The results showed that the introduction of Bi changes the potential-determining step of ORR. Moreover, the hydroxy adsorption free energy (GOH*) can be used as a descriptor of ORR activity, and 0.74 eV is the ideal GOH* for it to reach its maximum. Notably, we also found that the tensile strain introduced by Bi and electron transfer between Pt and Bi synergize to modulate the d-band of Pt to contract, shift downward, and break the 5d96s1 valence electron configuration of Pt, and accordingly, PtBi(100), with the lowest d-band center, gives the best ORR activity, which is even slightly higher than that of Pt(111).
Collapse
Affiliation(s)
- Yan-Ping Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zi-Xiang Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - He-He Wei
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai200237, China
| |
Collapse
|
4
|
Guo J, Jiao S, Ya X, Zheng H, Wang R, Yu J, Wang H, Zhang Z, Liu W, He C, Fu X. Intermetallic Nanocrystals: Seed-Mediated Synthesis and Applications in Electrocatalytic Reduction Reactions. Chemistry 2022; 28:e202202221. [PMID: 36066483 DOI: 10.1002/chem.202202221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 12/14/2022]
Abstract
In recent years, intermetallic nanocrystals (IMNCs) have attracted extensive attention in the field of electrocatalysis. However, precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs seems to be a challenge to the traditional method of high-temperature annealing although these parameters have a significant effect on the electrocatalytic performance. Controllable synthesis of IMNCs by the wet chemistry method in the liquid phase shows great potential compared with the traditional high-temperature annealing method. In this Review, we attempt to summarize the preparation of IMNCs by the seed-mediated synthesis in the liquid phase, as well as their applications in electrocatalytic reduction reactions. Several representative examples are purposely selected for highlighting the huge potential of the seed-mediated synthesis approach in chemical synthesis. Specifically, we personally perceive the seed-mediated synthesis approach as a promising tool in the future for precise control over the size, shape, composition, structure, and exposed crystal facet of IMNCs.
Collapse
Affiliation(s)
- Jingchun Guo
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Shilong Jiao
- Department School of Materials, Key Lab for Special Functional Materials of Ministry of Education, Henan University, Kaifeng, Henan, 475001, P.R. China
| | - Xiuying Ya
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Huiling Zheng
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Ran Wang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Jiao Yu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Huanyu Wang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Zhilin Zhang
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Wei Liu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Congxiao He
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| | - Xucheng Fu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an, Anhui, 237012, P.R. China
| |
Collapse
|
5
|
General strategy for evaluating the d-band center shift and ethanol oxidation reaction pathway towards Pt-based electrocatalysts. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Ma XY, Zhang WY, Ye K, Jiang K, Cai WB. Electrolyte-Layer-Tunable ATR-SEIRAS for Simultaneous Detection of Adsorbed and Dissolved Species in Electrochemistry. Anal Chem 2022; 94:11337-11344. [PMID: 35930311 DOI: 10.1021/acs.analchem.2c02092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A balanced detection of both adsorbates and dissolved species is very important for the clarification of the electrochemical reaction mechanism yet remains a major challenge for different modes of electrochemical infrared (IR) spectroscopy. Among others, conventional attenuated total reflection-surface-enhanced IR absorption spectroscopy (ATR-SEIRAS) is far less sensitive to low-concentration solution species than to surface species. We report herein an electrochemical wide-frequency ATR-SEIRAS with a novel thin-layer flow cell design, fulfilling the simultaneous detection of the variations of surface and solution species. This setup consists of a silicon wafer (with one side micromachined and the other side metallized), a thin-layer electrolyte structure with tunable thickness and flow rate, and a tilt-correction system based on laser collimation, enabling a well-controlled mass transport within the electrolyte layer and the spectral differentiation of solution species from adsorbates. Using acidic methanol oxidation on a Pt film electrode as a model system, besides SEIRA bands for adsorbed CO and formate intermediates, IR spectral signals for dissolved products CO2, formic acid, and methyl formate can be readily identified for a quiescent electrolyte layer of ∼20 μm, which are otherwise undetected with conventional ATR-SEIRAS, as indicated by the trend of spectral features with increasing thickness or flow rate.
Collapse
Affiliation(s)
- Xian-Yin Ma
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Wei-Yi Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Ke Ye
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kun Jiang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Gao J, Zhou X, Wang Y, Chen Y, Xu Z, Qiu Y, Yuan Q, Lin X, Qiu HJ. Exploiting the Synergistic Electronic Interaction between Pt-Skin Wrapped Intermetallic PtCo Nanoparticles and Co-N-C Support for Efficient ORR/EOR Electrocatalysis in a Direct Ethanol Fuel Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202071. [PMID: 35607293 DOI: 10.1002/smll.202202071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The development of low-Pt catalysts with high activity and durability is critical for fuel cells. Here, Pt-skin wrapped sub-5 nm PtCo intermetallic nanoparticles are successfully mounted on single atom Co-N-C support by exploiting the barrier effect of Co-anchor. According to a collaborative experimental and computational investigation, the increased oxygen reduction reaction activity of PtCo/Co-N-C arises from the direct electron transfer from PtCo to Co-N-C, and the resulting optimal d-band center of Pt. Owing to such unique electronic structure interaction and synergistic effect, the specific and mass activities of PtCo/Co-N-C are up to 4.20 mA cm-2 and 2.71 A mgPt-1 , respectively, with barely degraded stability after 40 000 CV cycles. The PtCo/Co-N-C also exhibits outstanding activity as an ethanol electrocatalyst. This work shows a new and effective route to boost the overall efficiency of direct ethanol fuel cells in acidic media by integrating intermetallic low-Pt alloys and single atom carbon support.
Collapse
Affiliation(s)
- Jiaojiao Gao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xuyan Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Blockchain Development and Research Institute, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yu Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yimai Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zhenyu Xu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yejun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Qunhui Yuan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Xi Lin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Blockchain Development and Research Institute, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Blockchain Development and Research Institute, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
8
|
Liao Y, Wang Y, Liu J, Tang Y, Wu C, Chen Y. Ordered Mesoporous Carbon Confined Highly Dispersed PtCo Alloy for the Oxygen Reduction Reaction: The Effect of Structure and Composition on Performance. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yifei Liao
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yao Wang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Jinchao Liu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yiyun Tang
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chaoling Wu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| |
Collapse
|
9
|
Pt-Based Intermetallic Nanocrystals in Cathode Catalysts for Proton Exchange Membrane Fuel Cells: From Precise Synthesis to Oxygen Reduction Reaction Strategy. Catalysts 2021. [DOI: 10.3390/catal11091050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although oxygen reduction reaction (ORR) catalysts have been extensively investigated and developed, there is a lack of clarity on catalysts that can balance high performance and low cost. Pt-based intermetallic nanocrystals are of special interest in the commercialization of proton exchange membrane fuel cells (PEMFCs) due to their excellent ORR activity and stability. This review summarizes the wide range of applications of Pt-based intermetallic nanocrystals in cathode catalysts for PEMFCs and their unique advantages in the field of ORR. Firstly, we introduce the fundamental understanding of Pt-based intermetallic nanocrystals, and highlight the difficulties and countermeasures in their synthesis. Then, the progress of theoretical and experimental studies related to the ORR activity and stability of Pt-based intermetallic nanocrystals in recent years are reviewed, especially the integrated strategies for enhancing the stability of ORR. Finally, the challenges faced by Pt-based intermetallic nanocrystals are summarized and future research directions are proposed. In addition, numerous design ideas of Pt-based intermetallic nanocrystals as ORR catalysts are summarized, aiming to promote further development of commercialization of PEMFC catalysts while fully understanding Pt-based intermetallic nanocrystals.
Collapse
|
10
|
Zhang J, Qu X, Shen L, Li G, Zhang T, Zheng J, Ji L, Yan W, Han Y, Cheng X, Jiang Y, Sun S. Engineering the Near-Surface of PtRu 3 Nanoparticles to Improve Hydrogen Oxidation Activity in Alkaline Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006698. [PMID: 33470522 DOI: 10.1002/smll.202006698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Tailoring the near-surface composition of Pt-based alloy can optimize the surface chemical properties of a nanocatalyst and further improve the sluggish H2 electrooxidation performance in an alkaline electrolyte. However, the construction of alloy nanomaterials with a precise near-surface composition and smaller particle size still needs to overcome huge obstacles. Herein, ultra-small PtRu3 binary nanoparticles (<2 nm) evenly distributed on porous carbon (PtRu3 /PC), with different near-surface atomic compositions (Pt-increased and Ru-increased), are successfully synthesized. XPS characterizations and electrochemical test confirm the transformation of a near-surface atomic composition after annealing PtRu3 /PC-300 alloy; when annealing in CO atmosphere, forming the Pt-increased near-surface structure (500 °C), while the Ru-increased near-surface structure appears in an Ar heat treatment process (700 °C). Furthermore, three PtRu3 /PC nanocatalysts all weaken the hydrogen binding strength relative to the Pt/PC. Remarkably, the Ru-increased nanocatalyst exhibits up to 38.8-fold and 9.2-fold HOR improvement in mass activity and exchange current density, compared with the Pt/PC counterpart, respectively. CO-stripping voltammetry tests demonstrate the anti-CO poisoning ability of nanocatalysts, in the sequence of Ru-increased ≥ PtRu3 /PC-300 > Pt-increased > Pt/PC. From the perspective of engineering a near-surface structure, this study may open up a new route for the development of high-efficiency electrocatalysts with a strong electronic effect and oxophilic effect.
Collapse
Affiliation(s)
- Junming Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- School of Chemical and Material Science, Shanxi Normal University, Linfen, 041004, P. R. China
| | - Ximing Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Linfan Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Tianen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jinhong Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lifei Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yu Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoyang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yanxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
11
|
Taheri-Ledari R, Maleki A. Magnetic nanocatalysts utilized in the synthesis of aromatic pharmaceutical ingredients. NEW J CHEM 2021. [DOI: 10.1039/d0nj06022d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review covers recent developments in nanoscale magnetic catalytic systems and their applications in facilitating organic synthetic reactions of aromatic pharmaceutical ingredients.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| |
Collapse
|