1
|
Sanislav O, Tetaj R, Metali, Ratcliffe J, Phillips W, Klein AR, Sethi A, Zhou J, Mezzenga R, Saxer SS, Charnley M, Annesley SJ, Reynolds NP. Cell invasive amyloid assemblies from SARS-CoV-2 peptides can form multiple polymorphs with varying neurotoxicity. NANOSCALE 2024; 16:19814-19827. [PMID: 39363846 DOI: 10.1039/d4nr03030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The neurological symptoms of COVID-19, often referred to as neuro-COVID include neurological pain, memory loss, cognitive and sensory disruption. These neurological symptoms can persist for months and are known as Post-Acute Sequalae of COVID-19 (PASC). The molecular origins of neuro-COVID, and how it contributes to PASC are unknown, however a growing body of research highlights that the self-assembly of protein fragments from SARS-CoV-2 into amyloid nanofibrils may play a causative role. Previously, we identified two fragments from the SARS-CoV-2 proteins, Open Reading Frame (ORF) 6 and ORF10, that self-assemble into neurotoxic amyloid assemblies. Here we further our understanding of the self-assembly mechanisms and nano-architectures formed by these fragments and their biological responses. By solubilising the peptides in a fluorinated solvent, we eliminate insoluble aggregates in the starting materials (seeds) that change the polymorphic landscape of the assemblies. The resultant assemblies are dominated by structures with higher free energies (e.g. ribbons and amorphous aggregates) that are less toxic to cultured neurons but do affect their mitochondrial respiration. We also show the first direct evidence of cellular uptake of viral amyloids. This work highlights the importance of understanding the polymorphic behaviour of amyloids and the correlation to neurotoxicity, particularly in the context of neuro-COVID and PASC.
Collapse
Affiliation(s)
- Oana Sanislav
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Rina Tetaj
- Institute for Chemistry and Bioanalytics, School of Life Sciences, FHNW, Muttenz, 4132, Switzerland
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Metali
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Julian Ratcliffe
- Bio Imaging Platform, La Trobe University, Melbourne, Victoria 3086, Australia
| | - William Phillips
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Annaleise R Klein
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Ashish Sethi
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Jiangtao Zhou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
- Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Sina S Saxer
- Institute for Chemistry and Bioanalytics, School of Life Sciences, FHNW, Muttenz, 4132, Switzerland
| | - Mirren Charnley
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Victoria 3000, Australia
| | - Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nicholas P Reynolds
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
2
|
Mukherjee N, Ghosh S. Substance P-Derived Extracellular-Matrix-Mimicking Peptide Hydrogel as a Cytocompatible Biomaterial Platform. Chembiochem 2023; 24:e202300286. [PMID: 37461811 DOI: 10.1002/cbic.202300286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/15/2023] [Indexed: 08/19/2023]
Abstract
Self-assembled short peptide-based hydrogel platforms have become widely applicable biomedical therapeutic maneuvers for their soft, tunable architecture, which can influence cellular behavior and morphology to an inordinate extent. In this work, a short supramolecular hydrogelator peptide, substance P, has been designed and synthesized from the C terminus conserved "FFGLM" section of a biologically abundant neuropeptide by using a fusion approach. In addition, to incorporate a good hydrophobic-hydrophilic balance, the truncated pentapeptide segment was further C-terminally modified by the incorporation of an integrin-binding "RGD" motif. Thanks to its N-terminal Fmoc group, this octapeptide ensemble "FFGLMRGD" undergoes rapid self-assembly to give rise to an injectable, pH-responsive, hydrogel-based self-supporting platform that exhibited good cytocompatibility with the cultured mammalian cells under both 2D and 3D culture conditions without exerting any potent cytotoxic effect in a Live/Dead experiment. A rheological experiment demonstrated its hydrogel-like mechanical properties, including thixotropicity. The atomic force microscopy and field emission scanning electron microscopy images of the fabricated hydrogel show a tangled fibrous surface topography owing to the presence of the N-terminal Fmoc-FF residue. Furthermore, an in-vitro scratch assay performed on fibroblast cell lines confirmed the wound-ameliorating potency of this designed hydrogel; this substantiates its future therapeutic prospects.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India
| | - Surajit Ghosh
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan, 342037, India
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan, 342037, India
| |
Collapse
|
3
|
Cardoso P, Appiah Danso S, Hung A, Dekiwadia C, Pradhan N, Strachan J, McDonald B, Firipis K, White JF, Aburto-Medina A, Conn CE, Valéry C. Rational design of potent ultrashort antimicrobial peptides with programmable assembly into nanostructured hydrogels. Front Chem 2023; 10:1009468. [PMID: 36712988 PMCID: PMC9881724 DOI: 10.3389/fchem.2022.1009468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023] Open
Abstract
Microbial resistance to common antibiotics is threatening to cause the next pandemic crisis. In this context, antimicrobial peptides (AMPs) are receiving increased attention as an alternative approach to the traditional small molecule antibiotics. Here, we report the bi-functional rational design of Fmoc-peptides as both antimicrobial and hydrogelator substances. The tetrapeptide Fmoc-WWRR-NH2-termed Priscilicidin-was rationally designed for antimicrobial activity and molecular self-assembly into nanostructured hydrogels. Molecular dynamics simulations predicted Priscilicidin to assemble in water into small oligomers and nanofibrils, through a balance of aromatic stacking, amphiphilicity and electrostatic repulsion. Antimicrobial activity prediction databases supported a strong antimicrobial motif via sequence analogy. Experimentally, this ultrashort sequence showed a remarkable hydrogel forming capacity, combined to a potent antibacterial and antifungal activity, including against multidrug resistant strains. Using a set of biophysical and microbiology techniques, the peptide was shown to self-assemble into viscoelastic hydrogels, as a result of assembly into nanostructured hexagonal mesophases. To further test the molecular design approach, the Priscilicidin sequence was modified to include a proline turn-Fmoc-WPWRR-NH2, termed P-Priscilicidin-expected to disrupt the supramolecular assembly into nanofibrils, while predicted to retain antimicrobial activity. Experiments showed P-Priscilicidin self-assembly to be effectively hindered by the presence of a proline turn, resulting in liquid samples of low viscosity. However, assembly into small oligomers and nanofibril precursors were evidenced. Our results augur well for fast, adaptable, and cost-efficient antimicrobial peptide design with programmable physicochemical properties.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia,School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Samuel Appiah Danso
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia,Materials Characterisation and Modelling, Manufacturing, CSIRO, Clayton, VIC, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, VIC, Australia
| | - Nimish Pradhan
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia
| | - Jamie Strachan
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia,School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Brody McDonald
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia
| | - Kate Firipis
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Jacinta F. White
- Materials Characterisation and Modelling, Manufacturing, CSIRO, Clayton, VIC, Australia
| | | | - Charlotte E. Conn
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Céline Valéry
- School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology Theme, NanoBioPharm Research Group, RMIT University, Bundoora, VIC, Australia,*Correspondence: Céline Valéry,
| |
Collapse
|
4
|
Wu Y, Rakotoarisoa M, Angelov B, Deng Y, Angelova A. Self-Assembled Nanoscale Materials for Neuronal Regeneration: A Focus on BDNF Protein and Nucleic Acid Biotherapeutic Delivery. NANOMATERIALS 2022; 12:nano12132267. [PMID: 35808102 PMCID: PMC9268293 DOI: 10.3390/nano12132267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. The successful use of macromolecular biotherapeutics (recombinant growth factors, antibodies, enzymes, synthetic peptides, cell-penetrating peptide–drug conjugates, and RNAi sequences) in clinical developments for neuronal regeneration should benefit from the recent strategies for enhancement of their bioavailability. We highlight the advances in the development of nanoscale materials for drug delivery in neurodegenerative disorders. The emphasis is placed on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles) and polymer-based scaffolds, nanofibers and hydrogels. Self-assembled soft-matter nanoscale materials show favorable neuroprotective characteristics, safety, and efficacy profiles in drug delivery to the central and peripheral nervous systems. The advances summarized here indicate that neuroprotective biomolecule-loaded nanoparticles and injectable hydrogels can improve neuronal survival and reduce tissue injury. Certain recently reported neuronal dysfunctions in long-COVID-19 survivors represent early manifestations of neurodegenerative pathologies. Therefore, BDNF delivery systems may also help in prospective studies on recovery from long-term COVID-19 neurological complications and be considered as promising systems for personalized treatment of neuronal dysfunctions and prevention or retarding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yu Wu
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Miora Rakotoarisoa
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic;
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No. 1, Jinlian Road, Longwan District, Wenzhou 325001, China;
| | - Angelina Angelova
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
- Correspondence:
| |
Collapse
|
5
|
Charnley M, Islam S, Bindra GK, Engwirda J, Ratcliffe J, Zhou J, Mezzenga R, Hulett MD, Han K, Berryman JT, Reynolds NP. Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19. Nat Commun 2022; 13:3387. [PMID: 35697699 PMCID: PMC9189797 DOI: 10.1038/s41467-022-30932-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/18/2022] [Indexed: 01/04/2023] Open
Abstract
COVID-19 is primarily known as a respiratory disease caused by SARS-CoV-2. However, neurological symptoms such as memory loss, sensory confusion, severe headaches, and even stroke are reported in up to 30% of cases and can persist even after the infection is over (long COVID). These neurological symptoms are thought to be produced by the virus infecting the central nervous system, however we don't understand the molecular mechanisms triggering them. The neurological effects of COVID-19 share similarities to neurodegenerative diseases in which the presence of cytotoxic aggregated amyloid protein or peptides is a common feature. Following the hypothesis that some neurological symptoms of COVID-19 may also follow an amyloid etiology we identified two peptides from the SARS-CoV-2 proteome that self-assemble into amyloid assemblies. Furthermore, these amyloids were shown to be highly toxic to neuronal cells. We suggest that cytotoxic aggregates of SARS-CoV-2 proteins may trigger neurological symptoms in COVID-19.
Collapse
Affiliation(s)
- Mirren Charnley
- Centre for Optical Sciences and Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, VIC, 3000, Australia
| | - Saba Islam
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Guneet K Bindra
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jeremy Engwirda
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Julian Ratcliffe
- La Trobe University Bioimaging Platform, Bundoora, 3086, VIC, Australia
| | - Jiangtao Zhou
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092, Zurich, Switzerland
| | - Mark D Hulett
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Kyunghoon Han
- Department of Physics and Materials Science, Faculty of Science, Technology and Medicine, University of Luxembourg, 162a Avenue de la Faïencerie, Esch-sur-Alzette, L-1511, Luxembourg
| | - Joshua T Berryman
- Department of Physics and Materials Science, Faculty of Science, Technology and Medicine, University of Luxembourg, 162a Avenue de la Faïencerie, Esch-sur-Alzette, L-1511, Luxembourg.
| | - Nicholas P Reynolds
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
6
|
Lipid membrane-mediated assembly of the functional amyloid-forming peptide Somatostatin-14. Biophys Chem 2022; 287:106830. [DOI: 10.1016/j.bpc.2022.106830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022]
|