1
|
Li H. Single Molecule Force Spectroscopy Studies on Metalloproteins: Opportunities and Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1345-1353. [PMID: 36647634 DOI: 10.1021/acs.langmuir.2c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metalloproteins play important roles in a wide range of biological processes. Elucidating the mechanisms via which metalloproteins fold and constitute their metal centers is critical to the understanding of the functions and dynamics of metalloproteins. Owing to its superior force and length resolution, single-molecule force spectroscopy (SMFS) has evolved into a powerful tool to probe the unfolding and folding mechanisms of metalloproteins at the single level by forcing metalloproteins to unfold and then refold along a reaction coordinate defined by the applied stretching force. The folding of metalloproteins is complex and involves two interwound processes, the folding of the polypeptide chain and the constitution of the metal center. Experimental studies of the folding of metalloproteins are challenging. SMFS studies have allowed researchers to directly probe the folding and unfolding of metalloproteins at the single-molecule level and the effect of metal centers on the folding-unfolding energy landscape of metalloproteins. New mechanistic insights on the folding and unfolding of some metalloproteins have been obtained, demonstrating the power and unique advantages that SMFS techniques may offer. In this Perspective, using calcium-binding proteins and small iron-sulfur proteins as examples, I provide a concise overview of the information and insights that SMFS studies have provided to understand the folding and unfolding of metalloproteins. I also discuss the opportunities and challenges that are present in this fast-progressing area of research.
Collapse
Affiliation(s)
- Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
3
|
Shi S, Wu T, Zheng P. Direct Measurements of the Cobalt-thiolate Bonds Strength in Rubredoxin by Single-Molecule Force Spectroscopy. Chembiochem 2022; 23:e202200165. [PMID: 35475313 DOI: 10.1002/cbic.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Indexed: 11/07/2022]
Abstract
Cobalt is a trace transition metal. Although it is not abundant on earth, tens of cobalt-containing proteins exist in life. Moreover, the characteristic spectrum of Co(II) ion makes it a powerful probe for the characterization of metal-binding proteins through the formation of cobalt-ligand bonds. Since most of these natural and artificial cobalt-containing proteins are stable, we believe that these cobalt-ligand bonds in the protein system are also mechanically stable. To prove this, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to directly measure the rupture force of Co(II)-thiolate bond in Co-substituted rubredoxin (CoRD). By combining the chemical denature/renature method for building metalloprotein and cysteine coupling-based polyprotein construction strategy, we successfully prepared the polyprotein sample (CoRD) n suitable for single-molecule study. Thus, we quantified the strength of Co(II)-thiolate bonds in rubredoxin with a rupture force of ~140 pN, revealing that the bond is a stable chemical bond. In addition, the Co-S bond is more labile than the Zn-S bond in proteins, similar to the result from the metal-competing titration experiment.
Collapse
Affiliation(s)
- Shengchao Shi
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Tao Wu
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Peng Zheng
- Nanjing University, School of Chemistry and Chemical Engineering, 168 Xianlin Ave, Nanjing, Jiangsu Province, 210023, Nanjing, CHINA
| |
Collapse
|
4
|
Li J, Li H. New insights into the folding–unfolding mechanism and conformations of cytochrome C. Chem Sci 2022; 13:7498-7508. [PMID: 35872809 PMCID: PMC9241957 DOI: 10.1039/d2sc01126c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
Optical trapping experiments offer new insights into the folding and unfolding of cytochrome C.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
5
|
Facile Synthesis of Peptide-Conjugated Gold Nanoclusters with Different Lengths. NANOMATERIALS 2021; 11:nano11112932. [PMID: 34835696 PMCID: PMC8623805 DOI: 10.3390/nano11112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
The synthesis of ultra-small gold nanoclusters (Au NCs) with sizes down to 2 nm has received increasing interest due to their unique optical and electronic properties. Like many peptide-coated gold nanospheres synthesized before, modified gold nanoclusters with peptide conjugation are potentially significant in biomedical and catalytic fields. Here, we explore whether such small-sized gold nanoclusters can be conjugated with peptides also and characterize them using atomic force microscopy. Using a long and flexible elastin-like polypeptide (ELP)20 as the conjugated peptide, (ELP)20-Au NCs was successfully synthesized via a one-pot synthesis method. The unique optical and electronic properties of gold nanoclusters are still preserved, while a much larger size was obtained as expected due to the peptide conjugation. In addition, a short and rigid peptide (EAAAK)3 was conjugated to the gold nanoclusters. Their Yong’s modulus was characterized using atomic force microscopy (AFM). Moreover, the coated peptide on the nanoclusters was pulled using AFM-based single molecule-force spectroscopy (SMFS), showing expected properties as one of the first force spectroscopy experiments on peptide-coated nanoclusters. Our results pave the way for further modification of nanoclusters based on the conjugated peptides and show a new method to characterize these materials using AFM-SMFS.
Collapse
|
6
|
Nie J, Tian F, Zheng B, Wang Z, Zheng P. Exploration of Metal-Ligand Coordination Bonds in Proteins by Single-molecule Force Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
7
|
Li Q, Apostolidou D, Marszalek PE. Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations. Methods 2021; 197:39-53. [PMID: 34020035 DOI: 10.1016/j.ymeth.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/29/2022] Open
Abstract
Most proteins in proteomes are large, typically consist of more than one domain and are structurally complex. This often makes studying their mechanical unfolding pathways challenging. Proteins composed of tandem repeat domains are a subgroup of multi-domain proteins that, when stretched, display a saw-tooth pattern in their mechanical unfolding force extension profiles due to their repetitive structure. However, the assignment of force peaks to specific repeats undergoing mechanical unraveling is complicated because all repeats are similar and they interact with their neighbors and form a contiguous tertiary structure. Here, we describe in detail a combination of experimental and computational single-molecule force spectroscopy methods that proved useful for examining the mechanical unfolding and refolding pathways of ankyrin repeat proteins. Specifically, we explain and delineate the use of atomic force microscope-based single molecule force spectroscopy (SMFS) to record the mechanical unfolding behavior of ankyrin repeat proteins and capture their unusually strong refolding propensity that is responsible for generating impressive refolding force peaks. We also describe Coarse Grain Steered Molecular Dynamic (CG-SMD) simulations which complement the experimental observations and provide insights in understanding the unfolding and refolding of these proteins. In addition, we advocate the use of novel coiled-coils-based mechanical polypeptide probes which we developed to demonstrate the vectorial character of folding and refolding of these repeat proteins. The combination of AFM-based SMFS on native and CC-equipped proteins with CG-SMD simulations is powerful not only for ankyrin repeat polypeptides, but also for other repeat proteins and more generally to various multidomain, non-repetitive proteins with complex topologies.
Collapse
Affiliation(s)
- Qing Li
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Dimitra Apostolidou
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, United States.
| |
Collapse
|
8
|
Yu M, Zhao W, Zhang K, Guo X. Single-Molecule Mechanism of pH Sensitive Smart Polymer. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20110529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|