1
|
Kefer O, Ahrens L, Han J, Wollscheid N, Misselwitz E, Rominger F, Freudenberg J, Dreuw A, Bunz UHF, Buckup T. Efficient Intramolecular Singlet Fission in Spiro-Linked Heterodimers. J Am Chem Soc 2023; 145:17965-17974. [PMID: 37535495 DOI: 10.1021/jacs.3c05518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We investigate intramolecular singlet fission (iSF) of spiro-linked azaacene heterodimers by time-resolved spectroscopy and quantum chemical calculations. Combining two different azaacenes through a nonconjugated linker using condensation chemistry furnishes azaacene heterodimers. Compared to their homodimers, iSF quantum yields are improved at an extended absorption range. The driving force of iSF, the energy difference ΔEiSF between the S1 state and the correlated triplet pair 1(TT), is tuned by the nature of the heterodimers. iSF is exothermic in all of the herein studied molecules. The overall quantum yield for triplet exciton formation reaches approximately 174%. This novel concept exploits large energy differences between singlet electronic states in combination with spatially fixed chromophores, which achieves efficient heterogeneous iSF, if the through-space interaction between the chromophores is minimal.
Collapse
Affiliation(s)
- Oskar Kefer
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Lukas Ahrens
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jie Han
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Nikolaus Wollscheid
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Erik Misselwitz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
2
|
Gotfredsen H, Thiel D, Greißel PM, Chen L, Krug M, Papadopoulos I, Ferguson MJ, Nielsen MB, Torres T, Clark T, Guldi DM, Tykwinski RR. Sensitized Singlet Fission in Rigidly Linked Axial and Peripheral Pentacene-Subphthalocyanine Conjugates. J Am Chem Soc 2023; 145:9548-9563. [PMID: 37083447 DOI: 10.1021/jacs.2c13353] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The goal of harnessing the theoretical potential of singlet fission (SF), a process in which one singlet excited state is split into two triplet excited states, has become a central challenge in solar energy research. Covalently linked dimers provide crucial models for understanding the role of chromophore arrangement and coupling in SF. Sensitizers can be integrated into these systems to expand the absorption bandwidth through which SF can be accessed. Here, we define the role of the sensitizer-chromophore geometry in a sensitized SF model system. To this end, two conjugates have been synthesized consisting of a pentacene dimer (SF motif) connected via a rigid alkynyl bridge to a subphthalocyanine (the sensitizer motif) in either an axial or a peripheral arrangement. Steady-state and time-resolved photophysical measurements are used to confirm that both conjugates operate as per design, displaying near unity energy transfer efficiencies and high triplet quantum yields from SF. Decisively, energy transfer between the subphthalocyanine and pentacene dimer occurs ca. 26 times faster in the peripheral conjugate, even though the two chromophores are ca. 3 Å farther apart than in the axial conjugate. Following a theoretical evaluation of the dipolar coupling, Vdip2, and the orientation factor, κ2, of both the axial (Vdip2 = 140 cm-2; κ2 = 0.08) and the peripheral (Vdip2 = 724 cm-2; κ2 = 1.46) arrangements, we establish that this rate acceleration is due to a more favorable (nearly co-planar) relative orientation of the transition dipole moments of the subphthalocyanine and pentacenes in the peripheral constellation.
Collapse
Affiliation(s)
- Henrik Gotfredsen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K
| | - Dominik Thiel
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Phillip M Greißel
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Lan Chen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Marcel Krug
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Tomás Torres
- Department of Organic Chemistry and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
- IMDEA Nanociencia, C/Faraday 9, Cantoblanco, Madrid 28049, Spain
| | - Timothy Clark
- Department of Chemistry and Pharmacy and Computer-Chemie-Center (CCC), Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstraße 25, Erlangen 91052, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
3
|
Labella J, Torres T. Subphthalocyanines: contracted porphyrinoids with expanded applications. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Wang T, Zhang BY, Zhang HL. Singlet Fission Materials for Photovoltaics: from Small Molecules to Macromolecules. Macromol Rapid Commun 2022; 43:e2200326. [PMID: 35703581 DOI: 10.1002/marc.202200326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/29/2022] [Indexed: 11/08/2022]
Abstract
Singlet fission (SF) is a spin-allowed process in which a singlet state splits into two triplet states. Materials that enable SF have attracted great attention in the last decade, mainly stemming from the potential of overcoming the Shockley-Queisser (SQ) limit in photoenergy conversion. In the past decade, a large number of new molecules exhibiting SF have been explored and many devices based on SF materials have been studied, though the mechanistic understanding is still obscure. This review focuses on the recent developments of SF materials, including small molecules, oligomers and polymers. The molecular design strategies and related mechanisms of SF are discussed. Then the dynamics of charge transfer and energy transfer between SF materials and other materials are introduced. Further, we discuss the progresses of implementing SF in photovoltaics. It is hoped that a comprehensive understanding to the SF materials, devices and mechanism may pave a new way for the design of next generation photovoltaics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bo-Yang Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.,Prof. H. L. Zhang, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
5
|
Lavarda G, Labella J, Martínez-Díaz MV, Rodríguez-Morgade MS, Osuka A, Torres T. Recent advances in subphthalocyanines and related subporphyrinoids. Chem Soc Rev 2022; 51:9482-9619. [DOI: 10.1039/d2cs00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subporphyrinoids constitute a class of extremely versatile and attractive compounds. Herein, a comprehensive review of the most recent advances in the fundamentals and applications of these cone-shaped aromatic macrocycles is presented.
Collapse
Affiliation(s)
- Giulia Lavarda
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Victoria Martínez-Díaz
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Salomé Rodríguez-Morgade
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Atsuhiro Osuka
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|