1
|
Heble AY, Chen CL. Access to Advanced Functional Materials through Postmodification of Biomimetic Assemblies via Click Chemistry. Biomacromolecules 2024; 25:1391-1407. [PMID: 38422548 DOI: 10.1021/acs.biomac.3c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The design, synthesis, and fabrication of functional nanomaterials with specific properties remain a long-standing goal for many scientific fields. The self-assembly of sequence-defined biomimetic synthetic polymers presents a fundamental strategy to explore the chemical space beyond biological systems to create advanced nanomaterials. Moreover, subsequent chemical modification of existing nanostructures is a unique approach for accessing increasingly complex nanostructures and introducing functionalities. Of these modifications, covalent conjugation chemistries, such as the click reactions, have been the cornerstone for chemists and materials scientists. Herein, we highlight some recent advances that have successfully employed click chemistries for the postmodification of assembled one-dimensional (1D) and two-dimensional (2D) nanostructures to achieve applications in molecular recognition, mineralization, and optoelectronics. Specifically, biomimetic nanomaterials assembled from sequence-defined macromolecules such as peptides and peptoids are described.
Collapse
Affiliation(s)
- Annie Y Heble
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Weigel RK, Rangamani A, Alabi CA. Synthetically encoded complementary oligomers. Nat Rev Chem 2023; 7:875-888. [PMID: 37973830 DOI: 10.1038/s41570-023-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Creating the next generation of advanced materials will require controlling molecular architecture to a degree typically achieved only in biopolymers. Sequence-defined polymers take inspiration from biology by using chain length and monomer sequence as handles for tuning structure and function. These sequence-defined polymers can assemble into discrete structures, such as molecular duplexes, via reversible interactions between functional groups. Selectivity can be attained by tuning the monomer sequence, thereby creating the need for chemical platforms that can produce sequence-defined polymers at scale. Developing sequence-defined polymers that are specific for their complementary sequence and achieve their desired binding strengths is critical for producing increasingly complex structures for new functional materials. In this Review Article, we discuss synthetic platforms that produce sequence-defined, duplex-forming oligomers of varying length, strength and association mode, and highlight several analytical techniques used to characterize their hybridization.
Collapse
Affiliation(s)
- R Kenton Weigel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Adithya Rangamani
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Christopher A Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Zhao M, Zhang S, Zheng R, Alamdari S, Mundy CJ, Pfaendtner J, Pozzo LD, Chen CL, De Yoreo JJ, Ferguson AL. Computational and Experimental Determination of the Properties, Structure, and Stability of Peptoid Nanosheets and Nanotubes. Biomacromolecules 2023. [PMID: 37141445 DOI: 10.1021/acs.biomac.3c00107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Peptoids (N-substituted glycines) are a group of highly controllable peptidomimetic polymers. Amphiphilic diblock peptoids have been engineered to assemble crystalline nanospheres, nanofibrils, nanosheets, and nanotubes with biochemical, biomedical, and bioengineering applications. The mechanical properties of peptoid nanoaggregates and their relationship to the emergent self-assembled morphologies have been relatively unexplored and are critical for the rational design of peptoid nanomaterials. In this work, we consider a family of amphiphilic diblock peptoids consisting of a prototypical tube-former (Nbrpm6Nc6, a NH2-capped hydrophobic block of six N-((4-bromophenyl)methyl)glycine residues conjugated to a polar NH3(CH2)5CO tail), a prototypical sheet-former (Nbrpe6Nc6, where the hydrophobic block comprises six N-((4-bromophenyl)ethyl)glycine residues), and an intermediate sequence that forms mixed structures ((NbrpeNbrpm)3Nc6). We combine all-atom molecular dynamics simulations and atomic force microscopy to determine the mechanical properties of the self-assembled 2D crystalline nanosheets and relate these properties to the observed self-assembled morphologies. We find good agreement between our computational predictions and experimental measurements of Young's modulus of crystalline nanosheets. A computational analysis of the bending modulus along the two axes of the planar crystalline nanosheets reveals bending to be more favorable along the axis in which the peptoids stack by interdigitation of the side chains compared to that in which they form columnar crystals with π-stacked side chains. We construct molecular models of nanotubes of the Nbrpm6Nc6 tube-forming peptoid and predict a stability optimum in good agreement with experimental measurements. A theoretical model of nanotube stability suggests that this optimum is a free energy minimum corresponding to a "Goldilocks" tube radius at which capillary wave fluctuations in the tube wall are minimized.
Collapse
Affiliation(s)
- Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Shuai Zhang
- Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Renyu Zheng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Sarah Alamdari
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Yang W, Zhou Y, Jin B, Qi X, Cai B, Yin Q, Pfaendtner J, De Yoreo JJ, Chen CL. Designing sequence-defined peptoids for fibrillar self-assembly and silicification. J Colloid Interface Sci 2023; 634:450-459. [PMID: 36542974 DOI: 10.1016/j.jcis.2022.11.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/10/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
In the biological environment, mineral crystals exquisitely controlled by biomacromolecules often show intricate hierarchical structures and superior mechanical properties. Among these biominerals, spicules, hybrid silica/protein superstructures serving as skeletal elements in demosponges, represent an excellent example for motivating the synthesis of silica materials. Herein, by designing sequence-defined peptoids containing side chains with a strong binding to silica, we demonstrated that self-assembly of these peptoids into fiber structures enables the mimicking of both biocatalytic and templating functions of silicatein filaments for the formation of silica fibers at near-neutral pH and ambient temperature. We further showed that the presence of amino groups is significant for the nucleation of silica on self-assembled peptoid nanofibers. Molecular dynamics simulation further confirmed that having silica-binding of amino side chains is critical for self-assembled peptoid fibers in triggering silica formation. We demonstrated that tuning inter-peptoid interactions by varying carboxyl and amino side chains significantly influences the assembly kinetics and final morphologies of peptoid assemblies as scaffolds for directing silica mineralization to form silica spheres, fibers, and sheets. The formation of silica shell on peptoid fibers increased the mechanical property of peptoid hydrogel materials by nearly 1000-fold, highlighting the great potential of using silicification to enhance the mechanical property of hydrogel materials for applications including tissue engineering. Since peptoids are highly robust and programmable, we expect that self-assembly of peptoids containing solid-binding side chains into hierarchical materials opens new opportunities in the design and synthesis of highly tunable scaffolds that direct the formation of composite nanomaterials.
Collapse
Affiliation(s)
- Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Biao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Xin Qi
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Bin Cai
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; School of Chemistry and Chemical Engineering, Shandong University, Shandong 250100, China
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin 300072, China
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Materials Science and Engineering, University of Washington, Seattle, WA 98105, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
5
|
Ma J, Jin B, Guye KN, Chowdhury ME, Naser NY, Chen CL, De Yoreo JJ, Baneyx F. Controlling Mineralization with Protein-Functionalized Peptoid Nanotubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207543. [PMID: 36281797 DOI: 10.1002/adma.202207543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Sequence-defined foldamers that self-assemble into well-defined architectures are promising scaffolds to template inorganic mineralization. However, it has been challenging to achieve robust control of nucleation and growth without sequence redesign or extensive experimentation. Here, peptoid nanotubes functionalized with a panel of solid-binding proteins are used to mineralize homogeneously distributed and monodisperse anatase nanocrystals from the water-soluble TiBALDH precursor. Crystallite size is systematically tuned between 1.4 and 4.4 nm by changing protein coverage and the identity and valency of the genetically engineered solid-binding segments. The approach is extended to the synthesis of gold nanoparticles and, using a protein encoding both material-binding specificities, to the fabrication of titania/gold nanocomposites capable of photocatalysis under visible-light illumination. Beyond uncovering critical roles for hierarchical organization and denticity on solid-binding protein mineralization outcomes, the strategy described herein should prove valuable for the fabrication of hierarchical hybrid materials incorporating a broad range of inorganic components.
Collapse
Affiliation(s)
- Jinrong Ma
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, 98115, USA
| | - Biao Jin
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, WA, 98115, USA
| | - Md Emtias Chowdhury
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nada Y Naser
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98115, USA
| | - Chun-Long Chen
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98115, USA
| | - James J De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98115, USA
| | - François Baneyx
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, 98115, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98115, USA
| |
Collapse
|
6
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Monahan M, Homer M, Zhang S, Zheng R, Chen CL, De Yoreo J, Cossairt BM. Impact of Nanoparticle Size and Surface Chemistry on Peptoid Self-Assembly. ACS NANO 2022; 16:8095-8106. [PMID: 35486471 DOI: 10.1021/acsnano.2c01203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembled organic nanomaterials can be generated by bottom-up assembly pathways where the structure is controlled by the organic sequence and altered using pH, temperature, and solvation. In contrast, self-assembled structures based on inorganic nanoparticles typically rely on physical packing and drying effects to achieve uniform superlattices. By combining these two chemistries to access inorganic-organic nanostructures, we aim to understand the key factors that govern the assembly pathway and structural outcomes in hybrid systems. In this work, we outline two assembly regimes between quantum dots (QDs) and reversibly binding peptoids. These regimes can be accessed by changing the solubility and size of the hybrid (peptoid-QD) monomer unit. The hybrid monomers are prepared via ligand exchange and assembled, and the resulting assemblies are studied using ex-situ transmission electron microscopy as a function of assembly time. In aqueous conditions, QDs were found to stabilize certain morphologies of peptoid intermediates and generate a final product consisting of multilayers of small peptoid sheets linked by QDs. The QDs were also seen to facilitate or inhibit assembly in organic solvents based on the relative hydrophobicity of the surface ligands, which ultimately dictated the solubility of the hybrid monomer unit. Increasing the size of the QDs led to large hybrid sheets with regions of highly ordered square-packed QDs. A second, smaller QD species can also be integrated to create binary hybrid lattices. These results create a set of design principles for controlling the structure and structural evolution of hybrid peptoid-QD assemblies and contribute to the predictive synthesis of complex hybrid matter.
Collapse
Affiliation(s)
- Madison Monahan
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Micaela Homer
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Shuai Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-1700, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Renyu Zheng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James De Yoreo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-1700, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
8
|
Jin B, Yan F, Qi X, Cai B, Tao J, Fu X, Tan S, Zhang P, Pfaendtner J, Naser NY, Baneyx F, Zhang X, DeYoreo JJ, Chen C. Peptoid-Directed Formation of Five-Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angew Chem Int Ed Engl 2022; 61:e202201980. [PMID: 35167709 PMCID: PMC9258440 DOI: 10.1002/anie.202201980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Indexed: 11/17/2022]
Abstract
While bio-inspired synthesis offers great potential for controlling nucleation and growth of inorganic particles, precisely tuning biomolecule-particle interactions is a long-standing challenge. Herein, we used variations in peptoid sequence to manipulate peptoid-Au interactions, leading to the synthesis of concave five-fold twinned, five-pointed Au nanostars via a process of repeated particle attachment and facet stabilization. Ex situ and liquid-phase TEM observations show that a balance between particle attachment biased to occur near the star points, preferential growth along the [100] direction, and stabilization of (111) facets is critical to forming star-shaped particles. Molecular simulations predict that interaction strengths between peptoids and distinct Au facets differ significantly and thus can alter attachment kinetics and surface energies to form the stars. This work provides new insights into how sequence-defined ligands affect particle growth to regulate crystal morphology.
Collapse
Affiliation(s)
- Biao Jin
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - Feng Yan
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- School of Chemistry & Chemical Engineering, Linyi University The Middle Part of Shuangling Road, Linyi, Shandong Province, 276005 (China)
| | - Xin Qi
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Bin Cai
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - Jinhui Tao
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - Xiaofeng Fu
- Department of Biological Science, Florida State University 600 W College Ave, Tallahassee, FL 32306 (USA)
| | - Susheng Tan
- Department of Electrical and Computer Engineering & Petersen Institute of Nanoscience and Engineering (PINSE) University of Pittsburgh 4200 Fifth Ave, Pittsburgh, PA 15260 (USA)
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford University Offices, Wellington Square, Oxford, OX1 2JD (UK)
- Diamond Light Source Harwell Science and Innovation Campus, Didcot OX11 0DE (UK)
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Nada Y. Naser
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - François Baneyx
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Xin Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
| | - James J. DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- Department of Materials Science and Engineering University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| | - Chunlong Chen
- Physical Sciences Division, Pacific Northwest National Laboratory 902 Battellt Boulevard, Richland, WA 99352 (USA)
- Department of Chemical Engineering, University of Washington 1410 NE Campus Parkway, Seattle, WA 98195 (USA)
| |
Collapse
|
9
|
Jin B, Yan F, Qi X, Cai B, Tao J, Fu X, Tan S, Zhang P, Pfaendtner J, Naser NY, Baneyx F, Zhang X, DeYoreo JJ, Chen C. Peptoid‐Directed Formation of Five‐Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biao Jin
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| | - Feng Yan
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- School of Chemistry & Chemical Engineering Linyi University The Middle Part of Shuangling Road Linyi Shandong Province 276005 China
| | - Xin Qi
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Bin Cai
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- School of Chemistry and Chemical Engineering Shandong University Shanda Nan Road 27 Jinan China
| | - Jinhui Tao
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| | - Xiaofeng Fu
- Department of Biological Science Florida State University 600 W College Ave Tallahassee FL 32306 USA
| | - Susheng Tan
- Department of Electrical and Computer Engineering & Petersen Institute of Nanoscience and Engineering (PINSE) University of Pittsburgh 4200 Fifth Ave Pittsburgh PA 15260 USA
| | - Peijun Zhang
- Division of Structural Biology Wellcome Trust Centre for Human Genetics University of Oxford Roosevelt Drive, Wellington Square Oxford OX3 7BN UK
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0DE UK
| | - Jim Pfaendtner
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Nada Y. Naser
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - François Baneyx
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Xin Zhang
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
| | - James J. DeYoreo
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- Department of Materials Science and Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| | - Chun‐Long Chen
- Physical Sciences Division Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA 99352 USA
- Department of Chemical Engineering University of Washington 1410 NE Campus Parkway Seattle WA 98195 USA
| |
Collapse
|
10
|
De Yoreo JJ, Nakouzi E, Jin B, Chun J, Mundy CJ. Assembly-based pathways of crystallization. Faraday Discuss 2022; 235:9-35. [DOI: 10.1039/d2fd00061j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution crystallization of materials ranging from simple salts to complex supramolecular assemblies has long been viewed through the lens of classical nucleation and growth theories in which monomeric building blocks...
Collapse
|
11
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Guye KN, Shen H, Yaman MY, Liao GY, Baker D, Ginger DS. Importance of Substrate-Particle Repulsion for Protein-Templated Assembly of Metal Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9111-9119. [PMID: 34309385 DOI: 10.1021/acs.langmuir.1c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We study the protein-directed assembly of colloidal gold nanoparticles on de novo designed protein nanofiber templates. Using sequential assembly on glass substrates, we attach positively charged gold nanoparticles to protein nanofibers engineered to have a high density of negatively charged surface residues. Using a combination of electron and optical microscopy, we measure the density of particle attachment and characterize binding specificity. By varying nanoparticle size and pH of the solution, we explore the importance of charge-dependent particle-fiber and particle-substrate interactions. We find an inverse correlation between particle size and attachment density to protein nanofibers, attributed to the balance between size-dependent electrostatic particle-fiber attraction and particle-substrate repulsion. We show pH-dependent particle attachment density and binding specificity in relation to the protonation fraction of each assembly layer. Finally, we employ hyperspectral scattering microscopy to draw conclusions about particle density and interparticle spacings of optically observable particle assemblies.
Collapse
Affiliation(s)
- Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hao Shen
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Muammer Y Yaman
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gerald Y Liao
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
13
|
Yaman MY, Guye KN, Ziatdinov M, Shen H, Baker D, Kalinin SV, Ginger DS. Alignment of Au nanorods along de novo designed protein nanofibers studied with automated image analysis. SOFT MATTER 2021; 17:6109-6115. [PMID: 34128040 DOI: 10.1039/d1sm00645b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we focus on exploring the directional assembly of anisotropic Au nanorods along de novo designed 1D protein nanofiber templates. Using machine learning and automated image processing, we analyze scanning electron microscopy (SEM) images to study how the attachment density and alignment fidelity are influenced by variables such as the aspect ratio of the Au nanorods, and the salt concentration of the solution. We find that the Au nanorods prefer to align parallel to the protein nanofibers. This preference decreases with increasing salt concentration, but is only weakly sensitive to the nanorod aspect ratio. While the overall specific Au nanorod attachment density to the protein fibers increases with increasing solution ionic strength, this increase is dominated primarily by non-specific binding to the substrate background, and we find that greater specific attachment (nanorods attached to the nanofiber template as compared to the substrates) occurs at the lower studied salt concentrations, with the maximum ratio of specific to non-specific binding occurring when the protein fiber solutions are prepared in 75 mM NaCl concentration.
Collapse
Affiliation(s)
- Muammer Y Yaman
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Hao Shen
- Department of Biochemistry, University of Washington, Seattle, WA, USA and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA and Institute for Protein Design, University of Washington, Seattle, WA, USA and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Sergei V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, USA. and Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|