1
|
Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Revolutionizing energy storage with advanced reduced graphene oxide-wrapped MnSe@CoSe@FeSe 2 nanowires. Dalton Trans 2024; 53:16993-17006. [PMID: 39354882 DOI: 10.1039/d4dt01909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Thanks to their good redox activity properties and exceptional conductivity, metal selenides (MSs) have attracted great attention as prospective positive electrodes for hybrid supercapacitors. However, they demonstrate low-rate capacities and poor endurance. Nanomaterials fabricated from MSs and reduced graphene oxide (rGO) with a porous skeleton can effectively mitigate the above-mentioned problems. Herein, porous MnSe@CoSe@FeSe2 nanowires wrapped with rGO on nickel foam (NF@MCFS-rGO) are manufactured as a binder-free electrode for a hybrid supercapacitor. The obtained NF@MCFS-rGO, acting as a positive electrode, has distinct advantages such as (1) the porous nanowires are helpful for fast electrolyte penetration, (2) the conductivity of the MCFS is further improved when combined with rGO, and (3) wrapping MCFS within the rGO endows the nanomaterial with much better structural durability. Capitalizing on the high conductivity of the rGO and the porous morphology, the fabricated NF@MCFS-rGO manifests impressive characteristics with a capacitance of 1830 F g-1 at 1 A g-1 and only 6.75% capacitance loss within 10 000 cycles. By matching NF@MCFS-rGO with activated carbon (AC), the fabricated apparatus (AC\\NF@MCFS-rGO) reveals an energy density (ED) of 64.6 W h kg-1 and a long lastingness of 90.55% after 10 000 cycles.
Collapse
Affiliation(s)
- Akbar Mohammadi Zardkhoshoui
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran 3313193685, Iran.
| | | |
Collapse
|
2
|
Dehghanpour Farashah D, Abdollahi M, Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Exploring the potential of CuCoFeTe@CuCoTe yolk-shelled microrods in supercapacitor applications. NANOSCALE 2024; 16:8650-8660. [PMID: 38618947 DOI: 10.1039/d4nr00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Driven by their excellent conductivity and redox properties, metal tellurides (MTes) are increasingly capturing the spotlight across various fields. These properties position MTes as favorable materials for next-generation electrochemical devices. Herein, we introduce a novel, self-sustained approach to creating a yolk-shelled electrode material. Our process begins with a metal-organic framework, specifically a CoFe-layered double hydroxide-zeolitic imidazolate framework67 (ZIF67) yolk-shelled structure (CFLDH-ZIF67). This structure is synthesized in a single step and transformed into CuCoLDH nanocages. The resulting CuCoFeLDH-CuCoLDH yolk-shelled microrods (CCFLDH-CCLDHYSMRs) are formed through an ion-exchange reaction. These are then converted into CuCoFeTe-CuCoTe yolk-shelled microrods (CCFT-CCTYSMRs) by a tellurization reaction. Benefiting from their structural and compositional advantages, the CCFT-CCTYSMR electrode demonstrates superior performance. It exhibits a fabulous capacity of 1512 C g-1 and maintains an impressive 84.45% capacity retention at 45 A g-1. Additionally, it shows a remarkable capacity retention of 91.86% after 10 000 cycles. A significant achievement of this research is the development of an activated carbon (AC)||CCFT-CCTYSMR hybrid supercapacitor. This supercapacitor achieves a good energy density (Eden) of 63.46 W h kg-1 at a power density (Pden) of 803.80 W kg-1 and retains 88.95% of its capacity after 10 000 cycles. These results highlight the potential of telluride-based materials in advanced energy storage applications, marking a step forward in the development of high-energy, long-life hybrid supercapacitors.
Collapse
|
3
|
Chernysheva DV, Smirnova NV, Ananikov VP. Recent Trends in Supercapacitor Research: Sustainability in Energy and Materials. CHEMSUSCHEM 2024; 17:e202301367. [PMID: 37948061 DOI: 10.1002/cssc.202301367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Supercapacitors (SCs) have emerged as critical components in applications ranging from transport to wearable electronics due to their rapid charge-discharge cycles, high power density, and reliability. This review offers an analysis of recent strides in supercapacitor research, emphasizing pivotal developments in sustainability, electrode materials, electrolytes, and 'smart SCs' designed for modern microelectronics with attributes such as flexibility, stretchability, and biocompatibility. Central to this discourse are two dominant electrode materials: carbon materials (CMs), primarily in electric double layer capacitors (EDLCs), and pseudocapacitive materials, involving oxides/hydroxides, chalcogenides, metal-organic frameworks, conductive polymers and metal nitrides such as MXene. Despite EDLCs' historical use, challenges such as low energy density persist, with heteroatom introduction into the carbon lattice seen as a solution. Concurrently, pseudocapacitive materials dominate recent studies, with efficiency enhancement strategies, such as the creation of hybrids based on different types of materials, surface structural engineering and doping, under exploration. Electrolyte innovation, especially the shift towards gel polymer electrolytes for flexible SCs, and the harmonization of electrode materials with SC designs are highlighted. Emphasis is given to smart SCs with novel attributes such as self-charging, self-healing, biocompatibility, and environmentally conscious designs. In summary, the article underscores the drive in sustainable supercapacitor research to achieve high energy and power density, steering towards SCs that are efficient and versatile and involving bioderived/biocompatible SC materials. This brief review is based on selected recent references, offering depth combined with an accessible overview of the SC landscape.
Collapse
Affiliation(s)
- Daria V Chernysheva
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia str. 132, Novocherkassk, 346428, Russia
| | - Nina V Smirnova
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia str. 132, Novocherkassk, 346428, Russia
| | - Valentine P Ananikov
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia str. 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia
| |
Collapse
|
4
|
Li M, Luo Z, Quan J, Ding T, Xu B, Li W, Mao Q, Ma W, Xiang H, Zhu M. Oxygen defect enriched hematite nanorods @ reduced graphene oxide core-sheath fiber for superior flexible asymmetric supercapacitor. J Colloid Interface Sci 2024; 653:77-84. [PMID: 37708734 DOI: 10.1016/j.jcis.2023.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The development of flexible asymmetric supercapacitors with high operating potential, superior energy density, and exceptional rate performance holds significant implications for the advancement of flexible electronics. Herein, oxygen-deficient hematite nanorods @ reduced graphene oxide (Fe2O3-x@RGO) core-sheath fiber was rationally designed and fabricated. The introduction of oxygen defects can simultaneously enhance the conductivity, create a mesoporous crystalline structure, increase active surface area and sites. This leads to a significantly improved electrochemical performance, exhibiting a high specific capacitance of 525.2F cm-3 at 5 mV s-1 and remarkable rate capability (53.7 % retention from 5 to 100 mV s-1). Additionally, a flexible asymmetric supercapacitor was assembled employing Fe2O3-x@RGO fibers as anode and MnO2/RGO fibers as cathode. This design achieved a maximum operating voltage of 2.35 V, high energy density of 71.4 mWh cm-3, and outstanding cycling stability with 97.1 % retention after 5000 cycles. This study proposes a straightforward and efficient strategy to substantially enhance the electrochemical performances of transition metal oxide anodes, thereby promoting their practical application in asymmetric supercapacitors.
Collapse
Affiliation(s)
- Min Li
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Zhengxin Luo
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Jiaxin Quan
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Ting Ding
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Bilin Xu
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Wanfei Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qinghui Mao
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Wujun Ma
- College of Textile and Garment, Nantong University, Nantong 226019, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Zhang X, Huang M, Wang Y, Ni Y. Spongelike Bimetallic Selenides Derived from Prussian Blue Analogue on Layered Ni(II)-Based MOF for High-Efficiency Supercapacitors. Inorg Chem 2023; 62:18670-18679. [PMID: 37906098 DOI: 10.1021/acs.inorgchem.3c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Recently, employing metal-organic frameworks (MOFs) as precursors to prepare various metal oxides, sulfides, and selenides has drawn enormous attention in the field of energy storage. In this paper, the nanosheets of an organophosphate-based Ni-MOF were successfully synthesized and employed as the template to prepare the Prussian blue analogue (PBA) nanoslices and nanoparticles on the nanosheet (PBA/Ni-MOF-NS-x h, x h stands for the reaction time.) by an in situ etching method. After selenization by the solvothermal method, the PBA nanoslices and nanoparticles were transformed into spongelike bimetallic selenides (labeled as PBA/Ni-MOF-NS-x h-Se) decorated with some nanoparticles. All of the characterization results including PXRD, SEM, TEM, EDS, XPS, and BET demonstrated the successful transformation. Impressively, the as-synthesized PBA/Ni-MOF-NS-12 h-Se exhibited a high specific capacitance of 1897.90 F g-1 at a current density of 1 A g-1 and a superior capacitance retention rate of 73.32% as the current density increased to 20 A g-1. In addition, the asymmetric supercapacitor device, PBA/Ni-MOF-NS-12 h-Se//AC, delivered a high energy density of 30.69 W h kg-1 at 0.85 kW kg-1 and extraordinary cycling stability with an 83.00% capacitance retention rate over 5000 cycles.
Collapse
Affiliation(s)
- Xiudu Zhang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241002, China
| | - Mengya Huang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241002, China
| | - Yali Wang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241002, China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
6
|
Wan L, Wang Y, Jiang D, Zhang Y, Xie M, Chen J, Du C. Constructing nickel sulfide @ nickel boride hybrid nanosheet arrays with crystalline/amorphous interfaces for supercapacitors. J Colloid Interface Sci 2023; 649:815-825. [PMID: 37390529 DOI: 10.1016/j.jcis.2023.06.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
Designing a heterostructure with unique morphology and nanoarchitecture is regarded as an efficient strategy to achieve high-energy-density supercapacitors (SCs). Herein, a rational nickel sulfide @ nickel boride (Ni9S8@Ni2B) heterostructure is in situ synthesized on carbon cloth (CC) substrate via a simple electrodepositon strategy followed by a chemical reduction method. The three-dimensional hierarchically porous Ni9S8@Ni2B nanosheet arrays, consisting of crystalline Ni9S8 nanosheets and amorphous Ni2B nanosheets, can expose ample electroactive centers, shorten ion diffusion distance, and buffer volume changes during charging/discharging process. More importantly, the generation of crystalline/amorphous interfaces in the Ni9S8@Ni2B composite modulates its electrical structure and improves electrical conductivity. Owing to the synergy of Ni9S8 and Ni2B, the as-synthesized Ni9S8@Ni2B electrode acquires a specific capacity of 901.2C g-1 at 1 A g-1, a sound rate capability (68.3% at 20 A g-1), along with good cycling performance (79.7% capacity retention over 5000 cycles). Additionally, the assembled Ni9S8@Ni2B//porous carbon asymmetric supercapacitor (ASC) exhibits a cell voltage of 1.6 V and a maximum energy density of 59.7 Wh kg-1 at 805.2 W kg-1. These findings might offer a simple and innovative approach to fabricate advanced electrode materials for high-performance energy storage systems.
Collapse
Affiliation(s)
- Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yuqi Wang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Dianyu Jiang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| |
Collapse
|
7
|
Wang H, Yu K, Wang P, Jia P, Yuan Y, Liang C. ZIF-67-derived Co/CoSe ultrafine nanocrystal Schottky heterojunction decorated hollow carbon nanospheres as new-type anodes for potassium-ion batteries. J Colloid Interface Sci 2023; 645:55-65. [PMID: 37146379 DOI: 10.1016/j.jcis.2023.04.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Metal-organic frameworks (MOFs) have the advantages of controllable chemical properties, rich pore structures and reaction sites and are expected to be high-performance anode materials for the next generation of potassium-ion batteries (PIBs). However, due to the large radius of potassium ions, the pure MOF crystal structure is prone to collapse during ion insertion and processing, so its electrochemical performance is quite limited. In this work, a hollow carbon sphere-supported MOF-derived Co/CoSe heterojunction anode material for potassium-ion batteries was developed by a hydrothermal method. The anode has high potassium storage capacity (461.9 mA h/g after 200 cycles at 1 A/g), excellent cycling stability and superior rate performance. It is worth noting that the potassium ion storage capacity of the anode material shows a gradual upward trend with the charge-discharge cycle, which is 145.9 mA h/g after 3000 cycles at a current density of 10 A/g. This work demonstrates that MOF-derived CoSe anodes with high capacity and low cost may be promising candidates for the introduction of potassium ion storage.
Collapse
Affiliation(s)
- Haonan Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Kaifeng Yu
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Pengtao Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Pengcheng Jia
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Yongzhi Yuan
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Ce Liang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
8
|
Amiri M, Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Fabrication of nanosheet-assembled hollow copper-nickel phosphide spheres embedded in reduced graphene oxide texture for hybrid supercapacitors. NANOSCALE 2023; 15:2806-2819. [PMID: 36683464 DOI: 10.1039/d2nr06305k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Owing to their metalloid characteristics with high electrical conductivity, transition metal phosphides (TMPs) have attracted considerable research attention as prospective cathodes for hybrid supercapacitors. Unfortunately, they usually exhibit low rate performance as well as poor longevity, which does not meet the demands of hybrid supercapacitors. The nanocomposite constructed from reduced graphene oxide (rGO) and TMPs with a highly porous nature can effectively overcome the above-mentioned issues, greatly widening their utilization. In this work, we fabricated nanosheet-assembled hollow copper-nickel phosphide spheres (NH-CNPSs) by the controllable phosphatizing of copper-nickel-ethylene glycol (CN-EG) precursors. Then, porous NH-CNPSs were embedded in rGO texture (NH-CNPS-rGO) to form a unique porous nanoarchitecture. The obtained NH-CNPS-rGO has several advantages benefiting as the cathode electrode, such as (i) the hollow structure as well as porous nanosheets are conducive to fast electrolyte diffusion, (ii) the electrical conductivity of NH-CNPS is further enhanced when coupled with the rGO texture, hence promoting electron transfer in the whole structure, (iii) wrapping NH-CNPSs within the rGO texture endows the nanocomposite with much better structural stability, resulting in longer durability of the electrode, And (iv) the porous structures generated in the nanocomposite provide a perfect space for reducing the mass transfer resistance and accessing the electrolyte, thereby boosting the reaction kinetics. The tests demonstrated that the optimal NH-CNPS-rGO electrode revealed a capacity of up to 1075 C g-1, a superior rate capacity, and exceptional longevity of 94.7%. Moreover, a hybrid supercapacitor (NH-CNPS-rGO‖AC) equipped with the NH-CNPS-rGO-cathode electrode and activated carbon (AC)-anode electrode represented a satisfactory energy density of 64 W h kg-1 at 801 W kg-1 and amazing longevity (91.8% retention after 13 000 cycles), which endorses the promising potential of NH-CNPS-rGO for high-efficiency supercapacitors. This research showcases an appropriate method to engineer hollow TMP-rGO nanocomposites as effective materials for supercapacitors.
Collapse
Affiliation(s)
- Maryam Amiri
- Department of Chemistry, Shahid Beheshti University, G. C., Evin, 1983963113, Tehran, Iran.
| | | | | |
Collapse
|
9
|
Electrochemical behavior of in-situ electrosynthetized 3D Metal-Organic Framework (MOF) as ultra-stable thin film on nickel foam. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
One-step solvothermal synthesis of heterostructured nanocomposite Ni0.85Se/MnSe as the high-performance electrode material for supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Zhu G, Gao B, Zhang Y, Shi Z, Li Z, Tu G. A Study on the Effect of Graphene in Enhancing the Electrochemical Properties of SnO 2-Fe 2O 3 Anode Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7947. [PMID: 36431439 PMCID: PMC9694978 DOI: 10.3390/ma15227947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
To enhance the conductivity and volume expansion during the charging and discharging of transition metal oxide anode materials, rGO-SnO2-Fe2O3 composite materials with different contents of rGO were prepared by the in situ hydrothermal synthesis method. The SEM morphology revealed a sphere-like fluffy structure, particles of the 0.4%rGO-10%SnO2-Fe2O3 composite were smaller and more compact with a specific surface area of 223.19 m2/g, the first discharge capacity of 1423.75 mAh/g, and the specific capacity could be maintained at 687.60 mAh/g even after 100 cycles. It exhibited a good ratio performance and electrochemical reversibility, smaller charge transfer resistance, and contact resistance, which aided in lithium-ion transport. Its superior electrochemical performance was due to the addition of graphene, which made the spherical particle size distribution more uniform, effectively lowering the volume expansion during the process of charging and discharging and improving the electrochemical cycle stability of the anode materials.
Collapse
Affiliation(s)
- Guanglin Zhu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Bo Gao
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Ying Zhang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Zeyuan Shi
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China
| | - Zongbin Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Ganfeng Tu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China
| |
Collapse
|
12
|
Bao E, Ren X, Wu R, Liu X, Chen H, Li Y, Xu C. Porous MgCo2O4 nanoflakes serve as electrode materials for hybrid supercapacitors with excellent performance. J Colloid Interface Sci 2022; 625:925-935. [DOI: 10.1016/j.jcis.2022.06.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 01/17/2023]
|
13
|
Yang Y, Wang L, Zeng S, Zhao K, Wu Q, Yan L, Tian H, Jiao Z, Zhang J. FeP Coated in Nitrogen/Phosphorus Co-doped Carbon Shell Nanorods Arrays as High-Rate Capable Flexible Anode for K-ion Half/Full Batteries. J Colloid Interface Sci 2022; 624:670-679. [PMID: 35691231 DOI: 10.1016/j.jcis.2022.05.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
Building a proper flexible electrode with high cycling stability, rate capacity and initial coulombic efficiency (ICE) for flexible potassium-ion batteries (PIBs) remains a challenge. Herein, nitrogen/phosphorus co-doped carbon coated FeP nanorods arrays on carbon cloth (FeP@N, PC NRs/CC) as high-rate capable flexible self-supporting anode was successfully fabricated. The composite electrode combines the advantages of FeP nanorods arrays (FeP NRs), carbon cloth (CC) and N, P co-doped carbon shell (N, P-C), which comprehensively improves the electrochemical stability of the flexible electrode, while the open space between FeP nanorods can facilitate electrolyte impregnation and enhance K+ transfer, thus effectively elevating the corresponding rate capability. For the FeP@N, PC NRs/CC electrode, it delivers a reversible capacity of 388.8 mA h g-1 at 0.5 A g-1 up to 400 cycles. Even at 1.5 A g-1, it can still achieve a remarkable rate capacity of 346.9 mA h g-1. Moreover, the assembled soft-packed cell can always light the LED lights when it is bent at different angles, which exhibits excellent mechanical flexibility.
Collapse
Affiliation(s)
- Yujie Yang
- Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Linlin Wang
- Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 200444, PR China.
| | - Suyuan Zeng
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Kangning Zhao
- Laboratory of Advanced Separations (LAS) École Polytechnique Fédérale de Lausanne (EPFL) Sion CH-1950, Switzerland
| | - Qian Wu
- Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 200444, PR China
| | - Li Yan
- Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 200444, PR China
| | - Haoyu Tian
- Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Zheng Jiao
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, PR China.
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
14
|
Priyadharshini M, Pazhanivel T, Maiyalagan T, Albaqami MD, Ganesh P. Electrochemical investigation on hierarchical sea urchin shaped zinc nickel selenide for efficient supercapacitor. CERAMICS INTERNATIONAL 2022; 48:29011-29017. [DOI: 10.1016/j.ceramint.2022.04.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
15
|
Wu YF, Cao YC, Lee PY, Kubendhiran S, Chung RJ, Yougbaré S, Lin LY. Improving energy storage ability of ammonium-decorated cobalt fluoride using selenization as efficient active material of supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Fabrication of Co0.85Se@CN double-walled hollow cages to address the volume expansion of anode and enhance ion diffusion for sodium-ion storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Huang T, Xiong W, Ye X, Huang Z, Feng Y, Liang J, Ye S, Huang S, Li Y, Ren X, Ouyang X, Zhang Q, Liu J. Constructing robust polymer/two-dimensional Ti 3C 2T X solid-state electrolyte interphase via in-situ polymerization for high-capacity long-life and dendrite-free lithium metal anodes. J Colloid Interface Sci 2022; 628:583-594. [PMID: 36027769 DOI: 10.1016/j.jcis.2022.08.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
We constructed an artificial polymer/two-dimensional Ti3C2TX (MXene) solid electrolyte interphase (SEI) on a Li metal surface via an in-situ polymerization strategy. The polymer layer provides excellent interface contact and outstanding adaptability for the volume expansion of Li metal, decreasing interface impedance. On the other hand, the two-dimensional MXene with a low Li nucleation energy barrier is beneficial for uniform Li deposition and restraint of interfacial side reactions. In this work, a dense and durable MXene-integrated SEI between the Li metal anode and solid-state electrolyte (SSE) interface is constructed to render the Li/SSE/Li cell to maintain a stable polarization voltage of approximately 50 mV at a capacity of 0.50 mAh cm-2 for over 1000 h. It enables the Li/SSE/LiFePO4 cell to deliver a capacity of 130.1 mAh g-1 at 1C with a capacity retention of 91.4% after 900 cycles. Therefore, we believe that this facile in-situ polymerization method for constructing a layer of polymer/MXene SEI at the interface between Li metal anodes and SSE can promote the practical applications of Li metal batteries.
Collapse
Affiliation(s)
- Tao Huang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, PR China
| | - Wei Xiong
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, PR China; Institute of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, PR China
| | - Xue Ye
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, PR China
| | - Zhencheng Huang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, PR China
| | - Yuqing Feng
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, PR China
| | - Jianneng Liang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, PR China
| | - Shenghua Ye
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, PR China; Shenzhen Eigen-Equation Graphene Technology Co. Ltd, Shenzhen 518060, PR China
| | - Shaoluan Huang
- Shenzhen Eigen-Equation Graphene Technology Co. Ltd, Shenzhen 518060, PR China.
| | - Yongliang Li
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, PR China
| | - Xiangzhong Ren
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, PR China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China.
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, PR China.
| | - Jianhong Liu
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, PR China; Shenzhen Eigen-Equation Graphene Technology Co. Ltd, Shenzhen 518060, PR China.
| |
Collapse
|
18
|
Boosting electrochemical kinetics by loading CoB on vermiculite for supercapacitor application. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Liu A, Tang L, Gong L, Wu S, Tang J. Decorating cobalt selenide nanoparticles on polypyrrole nanowires as nanocomposite electrodes for hybrid supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Yang WD, Zhao RD, Xiang J, Loy S, Di YF, Li J, Li MT, Ma DM, Wu FF. 3D hierarchical ZnCo 2S 4@Ni(OH) 2 nanowire arrays with excellent flexible energy storage and electrocatalytic performance. J Colloid Interface Sci 2022; 626:866-878. [PMID: 35820221 DOI: 10.1016/j.jcis.2022.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023]
Abstract
It is essential for energy storage and conversion systems to construct electrodes and electrocatalysts with superior performance. In this work, ZnCo2S4@Ni(OH)2 nanowire arrays are synthesized on nickel foam by hydrothermal methods. As a supercapacitor electrode, the ZnCo2S4@Ni(OH)2 structure exhibits a specific capacitance of 1,263.0C g-1 at 1 A g-1. The as-fabricated ZnCo2S4@Ni(OH)2//active carbon device can achieve a maximum energy density of 115.4 Wh kg-1 at a power density of 5,400 W kg-1. As electrocatalysts, the ZnCo2S4@Ni(OH)2 structure delivers outstanding performance for oxygen evolution reaction (an overpotential of 256.3 mV at 50 mA cm-2), hydrogen evolution reaction (141.7 mV at 10 mA cm-2), overall water splitting (the cell voltage of 1.53 V at 50 mA cm-2), and a high stability for 13 h.
Collapse
Affiliation(s)
- Wen-Duo Yang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Rong-Da Zhao
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China.
| | - Jun Xiang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China.
| | - Sroeurb Loy
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Yi-Fei Di
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Jia Li
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Mei-Ting Li
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Dong-Mei Ma
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China
| | - Fu-Fa Wu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China.
| |
Collapse
|
21
|
Chen Data Analysis X, Kong Q, Wu X, An X, Zhang J, Wang Q, Yao W. Construction of V1.11S2 Flower Spheres for Efficient Aqueous Zn-ion Batteries. J Colloid Interface Sci 2022; 625:1002-1011. [DOI: 10.1016/j.jcis.2022.06.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 10/31/2022]
|
22
|
Hussain I, Sahoo S, Sayed MS, Ahmad M, Sufyan Javed M, Lamiel C, Li Y, Shim JJ, Ma X, Zhang K. Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214429] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Elucidating the pseudocapacitive mechanism of ternary Co-Ni-B electrodes–Towards miniaturization and superior electrochemical performance for building outmatched supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Chang CB, Chen KT, Tuan HY. Large-scale synthesis of few-layered copper antimony sulfide nanosheets as electrode materials for high-rate potassium-ion storage. J Colloid Interface Sci 2022; 608:984-994. [PMID: 34785473 DOI: 10.1016/j.jcis.2021.09.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022]
Abstract
Metal chalcogenides (MCs) have received widespread attentions in potassium ion storage, due to their high theoretical specific capacity and low cost. However, practical applications are still a challenge because of the slow diffusion rate and large ionic radius, leading to dramatic volume expansion and slow rate performance. Herein, we introduce a simple and large scale solvothermal method to synthesize high-quality two-dimensional (2D) layered CuSbS2 nanosheets with a thickness of about 5 nm. The thin 2D layered structure has a weak van der Waals gap and a large exposed surface area to contact the electrolyte and promotes rapid K+ diffusion kinetics. In addition, the in-situ copper exsolution during potassiation process enhances the rate capability of K+ storage. CuSbS2 half cells exhibited excellent rate performance, delivering specific capacities of 573, 505, 476, 230, 177 mAh g-1 at current densities of 0.1, 0.5, 1, 5, 10 A g-1, respectively. The unique K+ electrochemical storage mechanism and resistance change during reaction process was revealed in detail by operando XRD, XPS and TEM. Finally, potassium ion hybrid capacitors (PIHCs) with CuSbS2 nanosheets as anode and AC as cathode demonstrated excellent performances with the maximum energy density of 127 W h kg-1 and the power density of 2415 W kg-1, providing an example of rationally design a high rate battery-type PIHC anode.
Collapse
Affiliation(s)
- Che-Bin Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Ting Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsing-Yu Tuan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
25
|
Strong coordination ability of sulfur with cobalt for facilitating scale-up synthesis of Co 9S 8 encapsulated S, N co-doped carbon as a trifunctional electrocatalyst for oxygen reduction reaction, oxygen and hydrogen evolution reaction. J Colloid Interface Sci 2022; 608:2623-2632. [PMID: 34794809 DOI: 10.1016/j.jcis.2021.10.182] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
High activity trifunctional non-noble electrocatalysts, targeting oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER), are rationally designed by integrating the merits of both Co9S8 nanoparticles and carbons nanosheets. Herein, Co9S8 loaded with S, N co-doped carbon core-shell catalyst (Co9S8@SNC) was reasonably designed and synthesized by using the strong coordination effect between Co2+ and CS at the molecular level. The significant synergistic effect between the S, N co-doped carbon shell and Co9S8 core endows the catalyst with excellent catalytic performance for ORR, HER, and OER reactions. The carbon shell enhances the conductivity of the hybrid material, while the Co9S8 core provides the main catalytic active sites. More specifically, the half-wave potential for ORR is 0.846 mV, and the overpotential at 10 mA cm-2 for OER and HER are 320 mV and 170 mV, respectively. To test its practical application, zinc-air battery assembled by Co9S8@SNC shows a high power density of 239 mW cm-2, excellent rechargeability, and long cyclic stability. This work provides a promising and extensible method to in-situ synthesize core-shell metal sulfides loaded S, N co-doped carbon composites, which can be a promising candidate for electrocatalytic material in energy storage and conversion devices.
Collapse
|
26
|
Hollow NiCoSe2/C prepared through a step-by-step derivatization method for high performance supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Xia J, Zhang L, Xuan S, Ni Y, Zhang L. Self-templating Scheme for the Synthesis of NiCo2Se4 and BiSe Hollow Microspheres for High-energy Density Asymmetric Supercapacitors. CrystEngComm 2022. [DOI: 10.1039/d1ce01627j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous hollow structure of the electrode materials can enlarge the surface area in contact with the electrolyte, accelerating the transport of ions and electrons during redox reaction to enhance electrochemical...
Collapse
|
28
|
A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework. Biosens Bioelectron 2021; 193:113553. [PMID: 34385018 DOI: 10.1016/j.bios.2021.113553] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022]
Abstract
Electrochemical biosensors based on enzymes modified electrode are attracting special attention due to their broad applications. However, the immobilization of enzymes on electrode is always an important challenge because it's not conducive to conformational expansion of enzymes and affects the bioactivity of enzymes accordingly. Although the imobilization of enzymes in micropores of crystalline covalent-organic framework (COF) and metal-organic framework (MOF) to construct electrochemical biosensors based on pore embedding can achive good reuslts, their micropores can still not guarantee that the enzyme's conformation is well extended. Herein, a multienzyme microcapsules (enzymes@COF) containing glucose oxidase, horseradish peroxidase and acetylcholinesterase with a 600 nm-sized cavity and a shell of COF was used to construct electrochemical biosensors. The 600 nm-sized cavity ensures free conformation expansion of encapsulated enzymes and the shell of COF with good chemical stablity protects encapsulated enzymes against external harsh environments. And the specific catalytic substrates of the enzymes can infiltrated into the microcapsule through the pores of COF shell. So, the biosensor based on enzymes@COF microcapsules demonstrated preeminent performances as compared with those of enzymes assembled on electrode. The detection limits were 0.85 μM, 2.81 nM, 3.0×10-13 g/L, and the detection range were 2.83 μM-8.0 mM, 9.53 nM-7.0 μM, 10-12 g/L-10-8 g/L for glucose, H2O2 and malathion detection. This work shows that it is feasible to fabricate electrochemical sensors using enzymes@COF microcapsules.
Collapse
|
29
|
Fabrication of biomass-derived activated carbon with interconnected hierarchical architecture via H3PO4-assisted KOH activation for high-performance symmetrical supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Fe 2O 3 nanorods/CuO nanoparticles p-n heterojunction photoanode: Effective charge separation and enhanced photoelectrochemical properties. J Colloid Interface Sci 2021; 602:32-42. [PMID: 34118603 DOI: 10.1016/j.jcis.2021.05.140] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 11/24/2022]
Abstract
Fe2O3/CuO p-n heterojunction photoelectrode films were fabricated by growing CuO nanoparticles on Fe2O3 nanorods via an impregnation method. The content of CuO in Fe2O3/CuO films was changed to study the role of CuO on the p-n heterojunction. The obtained Fe2O3/CuO photoelectrodes exhibited high intensity of visible-light absorption and excellence photoelectrochemical (PEC) performance. The incident photocurrent efficiency (IPCE) of Fe2O3/CuO photoanode reached 11.4% under 365 nm light irradiation, which is 2.6 times higher than that of bare Fe2O3 photoanode. In a PEC water splitting reaction, the H2 and O2 production rates for Fe2O3/CuO-3 were 0.294 and 0.130 µmol/min. The enhanced PEC performance was mainly contributed by the enhanced charge separation and the synergism achieved in Fe2O3/CuO p-n heterojunctions. This work could provide a new route to construct efficient Fe2O3-based composite photoelectrodes for the PEC.
Collapse
|
31
|
Wang G, Zhu J, Quan Y, Wang J, Gao S, Xu X, Min Q, Ma Y, Guo Y, Wang Z. Facile synthesis of cobalt Disulfide/Carbon nanotube composite as High-performance supercapacitors electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Ameri B, Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Metal-organic-framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors. Dalton Trans 2021; 50:8372-8384. [PMID: 34037022 DOI: 10.1039/d1dt01215k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein, we propose a viable strategy for the synthesis of hollow manganese nickel selenide spheres comprising nanosheets supported on the nickel foam (denoted as MNSe@NF) from the MOF. The MNSe nanostructures can demonstrate enriched active sites, and shorten the ion-electron diffusion pathways. When the MNSe@NF electrode is used as a cathode electrode for a hybrid supercapacitor, the electrode reflected impressive supercapacitive properties with a high capacity of 325.6 mA h g-1 (1172.16 C g-1) at 2 A g-1, an exceptional rate performance of 86.6% at 60 A g-1, and remarkable longevity (3.2% capacity decline after 15 000 cycles). Also, the assembled MNSe@NF∥AC@NF hybrid supercapacitors employing activated carbon on the nickel foam (AC@NF, anode electrode) and MNSe@NF (cathode electrode) revealed an impressive energy density of 66.1 W h kg-1 at 858.45 W kg-1 and an excellent durability of 94.1% after 15 000 cycles.
Collapse
Affiliation(s)
- Bahareh Ameri
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
| | | | | |
Collapse
|