1
|
Song S, Li Z, Li J, Liu Y, Li Z, Wang P, Huang J. Electrospray Nano-Micro Composite Sodium Alginate Microspheres with Shape-Adaptive, Antibacterial, and Angiogenic Abilities for Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28147-28161. [PMID: 38783481 DOI: 10.1021/acsami.4c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Nonhealing infectious wounds, characterized by bacterial colonization, wound microenvironment destruction, and shape complexity, present an intractable problem in clinical practice. Inspired by LEGOs, building-block toys that can be assembled into desired shapes, we proposed the use of electrospray nano-micro composite sodium alginate (SA) microspheres with antibacterial and angiogenic properties to fill irregularly shaped wounds instantly. Specifically, porous poly(lactic-co-glycolic acid) (PLGA) microspheres (MSs) encapsulating basic fibroblast growth factor (bFGF) were produced by a water-in-oil-in-water double-emulsion method. Then, bFGF@MSs were blended with the SA solution containing ZIF-8 nanoparticles. The resultant solution was electrosprayed to obtain nano-micro composite microspheres (bFGF@MS/ZIF-8@SAMSs). The composite MSs' size could be regulated by PLGA MS mass proportion and electrospray voltage. Moreover, bFGF, a potent angiogenic agent, and ZIF-8, bactericidal nanoparticles, were found to release from bFGF@MS/ZIF-8@SAMSs in a controlled and sustainable manner, which promoted cell proliferation, migration, and tube formation and killed bacteria. Through experimentation on rat models, bFGF@MS/ZIF-8@SAMSs were revealed to adapt to wound shapes and accelerate infected wound healing because of the synergistic effects of antibacterial and angiogenic abilities. In summation, this study developed a feasible approach to prepare bioactive nano-micro MSs as building blocks that can fill irregularly shaped infected wounds and improve healing.
Collapse
Affiliation(s)
- Shurui Song
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ze Li
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, China
| | - Jiayang Li
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, China
| | - Yangyang Liu
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhenlu Li
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Peige Wang
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jinjian Huang
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Cho TH, Farjam N, Barton K, Dasgupta NP. Subtractive Patterning of Nanoscale Thin Films Using Acid-Based Electrohydrodynamic-Jet Printing. SMALL METHODS 2024; 8:e2301407. [PMID: 38161264 DOI: 10.1002/smtd.202301407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/16/2023] [Indexed: 01/03/2024]
Abstract
As an alternative to traditional photolithography, printing processes are widely explored for the patterning of customizable devices. However, to date, the majority of high-resolution printing processes for functional nanomaterials are additive in nature. To complement additive printing, there is a need for subtractive processes, where the printed ink results in material removal, rather than addition. In this study, a new subtractive patterning approach that uses electrohydrodynamic-jet (e-jet) printing of acid-based inks to etch nanoscale zinc oxide (ZnO) thin films deposited using atomic layer deposition (ALD) is introduced. By tuning the printing parameters, the depth and linewidth of the subtracted features can be tuned, with a minimum linewidth of 11 µm and a tunable channel depth with ≈5 nm resolution. Furthermore, by tuning the ink composition, the volatility and viscosity of the ink can be adjusted, resulting in variable spreading and dissolution dynamics at the solution/film interface. In the future, acid-based subtractive patterning using e-jet printing can be used for rapid prototyping or customizable manufacturing of functional devices on a range of substrates with nanoscale precision.
Collapse
Affiliation(s)
- Tae H Cho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Nazanin Farjam
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kira Barton
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Robotics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Neil P Dasgupta
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
3
|
Jin Y, Zhao Z, Chen J, Chen W, Wang G, Yin Z. Preparation of high-resolution micro/nano dot array by electrohydrodynamic jet printing with enhanced uniformity. Sci Rep 2024; 14:6932. [PMID: 38521866 PMCID: PMC10960794 DOI: 10.1038/s41598-024-57225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
The high-resolution array is the basic structure of most kinds of microelectronics. Electrohydrodynamic jet (E-Jet) printing technology is widely applied in manufacturing array structures with high resolution, high material compatibility and multi-modal printing. It is still challenging to acquire high uniformity of printed array with micro-nanometer resolution, which greatly influences the performance and lifetime of the microelectronics. In this paper, to improve the uniformity of the printed array, the influence of each parameter on the uniformity of the E-jet printed dot array is studied on the cobuilt NEJ-E/P200 experimental platform, finding the applied voltage plays the most important role in maintaining the uniformity of the printed array. By appropriately adjusting the printing parameters, the dot arrays with different resolutions from 500 pixels per inch (PPI) to 17,000 PPI are successfully printed. For arrays below and over 10,000 PPI, the deviations of the uniformity are within 5% and 10% respectively. In this work, the dot array over 15,000 PPI is first implemented using E-jet printing. The conclusions acquired by experimental analysis of dot array printing process are of great importance in high resolution array printing as it provides practical guidance for parameters adjustment.
Collapse
Affiliation(s)
- Yiwei Jin
- The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, HuaZhong University of Science and Technology, Wuhan, 430070, China
| | - Ziwei Zhao
- The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, HuaZhong University of Science and Technology, Wuhan, 430070, China
| | - Jiankui Chen
- The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, HuaZhong University of Science and Technology, Wuhan, 430070, China.
| | - Wei Chen
- The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, HuaZhong University of Science and Technology, Wuhan, 430070, China.
| | - Guozhen Wang
- The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, HuaZhong University of Science and Technology, Wuhan, 430070, China
| | - Zhouping Yin
- The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, HuaZhong University of Science and Technology, Wuhan, 430070, China
| |
Collapse
|
4
|
Li X, Liang J, Xiao J, Zhu L, Wang H, Sun L, Zhang F, Zhang Y, Yin P, Chen L, Wang D. Flexible Patterned Electrohydrodynamic Jet Printing Using Orthogonal Deflection Electrodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46300-46310. [PMID: 37733925 DOI: 10.1021/acsami.3c08769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Electrohydrodynamic jet (E-Jet) printing technology provides unmatched advantages in the fabrication of patterned micro/nanostructures. However, the rapid jets generated during printing can lead to localized droplet accumulation on complex structures due to the relatively slow motion control achieved with motorized translation stages, resulting in distorted patterns. To address this challenge, we introduce two jet-deflecting electrodes orthogonally placed on each other, which can rapidly change the electric field in the vicinity of the jet and thus flexibly adjust the flight trajectory of the fast jet to avoid the region where droplets have been deposited. In this way, the jet droplets are precisely controlled to generate high-fidelity microstructures with arbitrary predefined patterns on the stationary substrate. The maximum deflection distance of the jet droplets reaches several hundred microns. Furthermore, the positioning error of the printed structure is less than 3%. Moreover, we successfully obtained a diverse range of complex patterns by combining this technique with stage motion. This innovative printing technology not only enables the fabrication of complex patterned structures with high fidelity but also opens up exciting possibilities for new applications that require complete control of fast droplet positioning.
Collapse
Affiliation(s)
- Xiaojian Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Junsheng Liang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province and State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| | - Jianping Xiao
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Long Zhu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Huaan Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Lujing Sun
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Fan Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Penghe Yin
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Li Chen
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Dazhi Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province and State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Muldoon K, Song Y, Ahmad Z, Chen X, Chang MW. High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. MICROMACHINES 2022; 13:642. [PMID: 35457946 PMCID: PMC9033068 DOI: 10.3390/mi13040642] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022]
Abstract
Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
Collapse
Affiliation(s)
- Kirsty Muldoon
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| | - Yanhua Song
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| |
Collapse
|
6
|
Su S, Liang J, Li X, Xin W, Ye X, Xiao J, Xu J, Chen L, Yin P. Hierarchical Artificial Compound Eyes with Wide Field-of-View and Antireflection Properties Prepared by Nanotip-Focused Electrohydrodynamic Jet Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60625-60635. [PMID: 34886666 DOI: 10.1021/acsami.1c17436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial compound eyes (ACEs) endowed with durable superhydrophobicity, wide field-of-view (FOV), and antireflection properties are extremely appealing in advanced micro-optical systems. However, the simple and high-efficiency fabrication of ACEs with these functions is still a major challenge. Herein, inspired by moth eyes, ACEs with hierarchical macro/micro/nano structures were fabricated using the combination of nanotip-focused electrohydrodynamic jet (NFEJ) printing and air-assisted deformation processes. The NFEJ printing enables the direct and maskless fabrication of hierarchical micro/nanolens arrays (M/NLAs) without intermediate steps. The introduction of M/NLAs on the eye surface significantly improves the water hydrophobic performance with a water contact angle of 161.1° and contact angle hysteresis (CAH) of 4.2° and generally decreases the reflectance by 51% in the wavelength range of 350-1600 nm in comparison to the macroeye without any structures. The contact angle remains almost unchanged, and the CAH slightly increases from 4.2° to 8.7° after water jet impact for 20 min, indicating a durable superhydrophobicity. Moreover, the results confirm that the durable superhydrophobic ACEs with antireflection properties exhibit excellent imaging quality and a large FOV of up to 160° without distortion.
Collapse
Affiliation(s)
- Shijie Su
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Junsheng Liang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Xiaojian Li
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Wenwen Xin
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Xushi Ye
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Jianping Xiao
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Jun Xu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Li Chen
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Penghe Yin
- Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|