1
|
Kim C, Kozakci I, Lee SY, Kim B, Kim J, Lee J, Ma BS, Oh ES, Kim TS, Lee JY. Quantum Dot-Siloxane Anchoring on Colloidal Quantum Dot Film for Flexible Photovoltaic Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302195. [PMID: 37300352 DOI: 10.1002/smll.202302195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Indexed: 06/12/2023]
Abstract
Lead sulfide (PbS) colloidal quantum dots (CQDs) are promising materials for next-generation flexible solar cells because of near-infrared absorption, facile bandgap tunability, and superior air stability. However, CQD devices still lack enough flexibility to be applied to wearable devices owing to the poor mechanical properties of CQD films. In this study, a facile approach is proposed to improve the mechanical stability of CQDs solar cells without compromising the high power conversion efficiency (PCE) of the devices. (3-aminopropyl)triethoxysilane (APTS) is introduced on CQD films to strengthen the dot-to-dot bonding via QD-siloxane anchoring, and as a result, crack pattern analysis reveals that the treated devices become robust to mechanical stress. The device maintains 88% of the initial PCE under 12 000 cycles at a bending radius of 8.3 mm. In addition, APTS forms a dipole layer on CQD films, which improves the open circuit voltage (VOC ) of the device, achieving a PCE of 11.04%, one of the highest PCEs in flexible PbS CQD solar cells.
Collapse
Affiliation(s)
- Changjo Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Irem Kozakci
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Yeon Lee
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Byeongsu Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Junho Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jihyung Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Boo Soo Ma
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun Sung Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Han S, Kim K, Lee SY, Moon S, Lee JY. Stretchable Electrodes Based on Over-Layered Liquid Metal Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210112. [PMID: 36623476 DOI: 10.1002/adma.202210112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Liquid metals are attractive materials for stretchable electronics owing to their high electrical conductivity and near-zero Young's modulus. However, the high surface tension of liquid metals makes it difficult to form films. A novel stretchable film is proposed based on an over-layered liquid-metal network. An intentionally oxidized interfacial layer helps to construct uninterrupted indium and gallium nanoclusters and produces additional electrical pathways between the two metal networks under mechanical deformation. The films exhibit gigantic negative piezoresistivity (G-NPR), which decreased the resistance up to 85% during the first 50% stretching. This G-NPR property is due to the rupture of the metal oxides, which allows the formation of liquid eutectic gallium-indium (EGaIn) and the connection of the over-layered networks to build new electrical paths. The electrodes exhibiting G-NPR are complementarily combined with conventional electrodes to amplify their performance or achieve some unique operations.
Collapse
Affiliation(s)
- Seungseok Han
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyungmin Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Yeon Lee
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seongjun Moon
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Chen S, Pan Q, Wu T, Xie H, Xue T, Su M, Song Y. Printing nanoparticle-based isotropic/anisotropic networks for directional electrical circuits. NANOSCALE 2022; 14:14956-14961. [PMID: 36178246 DOI: 10.1039/d2nr03892g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the demand for integrated nanodevices, anisotropic conductive films are one type of interconnection structure for electronic components, which have been widely used for improving the integration of the system in printed circuit boards. This work presents a template-assisted printing strategy for the fabrication of nanoparticle-based networks with multi electrical properties. By manipulating the microfluid behavior under the guidance of the grid-shaped template, the continuity of liquid bridges can be precisely controlled in two directions. The isotropous circuits with crossbar paths, discrete paths as well as unidirectional paths are obtained, which achieve the switching of on/off states in the circuits. This work demonstrates a new type of directional circuits by the template-assisted printing method, which provides an effective fabrication strategy for electrical components and integrated systems.
Collapse
Affiliation(s)
- Sisi Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tingqing Wu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tangyue Xue
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Kim GI, Jung J, Min WK, Kim MS, Jung S, Choi DH, Chung J, Kim HJ. Mechanically Durable Organic/High- k Inorganic Hybrid Gate Dielectrics Enabled by Plasma-Polymerization of PTFE for Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28085-28096. [PMID: 35680562 DOI: 10.1021/acsami.2c04340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To achieve both the synergistic advantages of outstanding flexibility in organic dielectrics and remarkable dielectric/insulating properties in inorganic dielectrics, a plasma-polymerized hafnium oxide (HfOx) hybrid (PPH-hybrid) dielectric is proposed. Using a radio-frequency magnetron cosputtering process, the high-k HfOx dielectric is plasma-polymerized with polytetrafluoroethylene (PTFE), which is a flexible, thermally stable, and hydrophobic fluoropolymer dielectric. The PPH-hybrid dielectric with a high dielectric constant of 14.17 exhibits excellent flexibility, maintaining a leakage current density of ∼10-8 A/cm2 even after repetitive bending stress (up to 10000 bending cycles with a radius of 2 mm), whereas the HfOx dielectric degrades to be leaky. To evaluate its practical applicability to flexible thin-film transistors (TFTs), the PPH-hybrid dielectric is applied to amorphous indium-gallium-zinc oxide (IGZO) TFTs as a gate dielectric. Consequently, the PPH-hybrid dielectric-based IGZO TFTs exhibit stable electrical performance under the same harsh bending cycles: a field-effect mobility of 16.99 cm2/(V s), an on/off current ratio of 1.15 × 108, a subthreshold swing of 0.35 V/dec, and a threshold voltage of 0.96 V (averaged in nine devices). Moreover, the PPH-hybrid dielectric-based IGZO TFTs exhibit a reduced I-V hysteresis and an enhanced positive bias stress stability, with the threshold voltage shift decreasing from 4.99 to 1.74 V, due to fluorine incorporation. These results demonstrate that PTFE improves both the mechanical durability and electrical stability, indicating that the PPH-hybrid dielectric is a promising candidate for high-performance and low-power flexible electronics.
Collapse
Affiliation(s)
- Gwan In Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Joohye Jung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Display R&D Center, Samsung Display Co., Ltd., 181 Samsung-ro, Tangjeong-myeon, Asan-Si 31454, Republic of Korea
| | - Won Kyung Min
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min Seong Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sujin Jung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dong Hyun Choi
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jusung Chung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyun Jae Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|