1
|
Shafiq I, Mustafa A, Zahid R, Baby R, Ahmed S, Asghar MA, Ahamad T, Alam M, Braga AAC, Ojha SC. Theoretical Perspective toward Designing of 5-Methylbenzo [1,2- b:3,4- b':6,5- b″] trithiophene-Based Nonlinear Optical Compounds with Extended Acceptors. ACS OMEGA 2023; 8:39288-39302. [PMID: 37901567 PMCID: PMC10601083 DOI: 10.1021/acsomega.3c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
A series of benzotrithiophene-based compounds (DCTM1-DCTM6) having D1-π1-D2-π2-A configuration were designed using a reference molecule (DCTMR) via incorporating pyrrole rings (n = 1-5) as the π-spacer (π2). Quantum chemical calculations were performed to determine the impact of the pyrrole ring on the nonlinear optical (NLO) behavior of the above-mentioned chromophores. The optoelectronic properties of the compounds were determined at the MW1PW91/6-311G(d,p) functional. Among all of the derivatives, DCTM5 exhibited the least highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) band gap (Eg) 0.968 eV with a high softness of 0.562 eV-1, and hence possessed the highest polarizability. Interestingly, transition density matrix (TDM) findings demonstrated that DCTM5 with an effective diagonal charge transmission proportion at the acceptor group supports the frontier molecular orbital (FMO) results. Additionally, the exciton binding energy values for DCTM1-DCTM6 were found to be less than that for DCTMR and thus, the effective charge transfer was examined in the derivatives. All of the derivatives exhibited effective NLO outcomes with the highest magnitude of linear polarizability ⟨α⟩, and first (βtot) and second (γtot) hyperpolarizabilities relative to the parent compound. Nevertheless, the highest βtot and γtot were obtained for DTCM1 and DTCM6, 7.0440 × 10-27 and 22.260 × 10-34 esu, respectively. Hence, through this structural tailoring with a pyrrole spacer, effective NLO materials can be obtained for optoelectronic applications.
Collapse
Affiliation(s)
- Iqra Shafiq
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ayesha Mustafa
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Romaisa Zahid
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Rabia Baby
- Department
of education, Sukkur IBA university, Sukkur 65200, Pakistan
| | - Sarfraz Ahmed
- Wellman
Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Muhammad Adnan Asghar
- Department
of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore 54770, Pakistan
| | - Tansir Ahamad
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Manawwer Alam
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ataualpa A. C. Braga
- Departamento
de Qu′ımica Fundamental, Instituto de Qu′ımica, Universidade de Saõ Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508-000, Brazil
| | - Suvash Chandra Ojha
- Department
of Infectious Diseases, The Affiliated Hospital
of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
An approach to the construction of 3-aryl- and 3-hydroxy-substituted benzo[b]selenopheno[2,3-d]thiophenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Park S, Ryu S, Ho D, Chae W, Earmme T, Kim C, Seo S. Novel benzo[ b]thieno[2,3- d]thiophene derivatives with an additional alkyl-thiophene core: synthesis, characterization, and p-type thin film transistor performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj01635d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newly synthesized benzo[b]thieno[2,3-d]thiophene derivatives were employed as active layers of organic field effect transistors, and these transistors showed decent electrical performance.
Collapse
Affiliation(s)
- Soyoon Park
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Soomin Ryu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea
| | - Dongil Ho
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Wookil Chae
- Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
| | - Taeshik Earmme
- Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - SungYong Seo
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| |
Collapse
|