1
|
Vasco AV, Ceballos LG, Wessjohann LA, Rivera DG. Multicomponent Functionalization of the Octreotide Peptide Macrocyclic Scaffold. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aldrin V. Vasco
- Leibniz Institute of Plant Biochemistry: Leibniz-Institut fur Pflanzenbiochemie Bioorganic Chemistry GERMANY
| | | | - Ludger A. Wessjohann
- Leibniz Institute of Plant Biochemistry: Leibniz-Institut fur Pflanzenbiochemie Bioorganic Chemistry GERMANY
| | - Daniel García Rivera
- Universidad de la Habana Laboratory of Synthetic and Biomolecular Chemistry Zapata y G 10400 La Habana CUBA
| |
Collapse
|
2
|
Lubos M, Mrázková L, Gwozdiaková P, Pícha J, Buděšínský M, Jiráček J, Kaminský J, Žáková L. Functional stapled fragments of human preptin of minimised length. Org Biomol Chem 2022; 20:2446-2454. [PMID: 35253830 DOI: 10.1039/d1ob02193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preptin is a 34-amino-acid-long peptide derived from the E-domain of a precursor of insulin-like growth factor 2 (pro-IGF2) with bone-anabolic and insulin secretion amplifying properties. Here, we describe the synthesis, structures, and biological activities of six shortened analogues of human preptin. Eight- and nine-amino-acid-long peptide amides corresponding to the C-terminal part of human preptin were stabilised by two types of staples to induce a higher proportion of helicity in their secondary structure. We monitored the secondary structure of the stapled peptides using circular dichroism. The biological effect of the structural changes was determined afterwards by the ability of peptides to stimulate the release of intracellular calcium ions. We confirmed the previous observation that the stabilisation of the disordered conformation of human preptin has a deleterious effect on biological potency. However, surprisingly, one of our preptin analogues, a nonapeptide stabilised by olefin metathesis between positions 3 and 7 of the amino acid chain, had a similar ability to stimulate calcium ions' release to the full-length human preptin. Our findings could open up new ways to design new preptin analogues, which may have potential as drugs for the treatment of diabetes and osteoporosis.
Collapse
Affiliation(s)
- Marta Lubos
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Lucie Mrázková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Petra Gwozdiaková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic.
| |
Collapse
|
3
|
Chen J, Cui T, Sun S, Guo Y, Chen J, Wang J, Bierer D, Li YM. Application of tert-Butyl Disulfide-Protected Amino Acids for the Fmoc Solid-Phase Synthesis of Lactam Cyclic Peptides under Mild Metal-Free Conditions. J Org Chem 2021; 86:8610-8619. [PMID: 34161109 DOI: 10.1021/acs.joc.1c00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lactam cyclic peptides are a class of interesting and pharmaceutically active molecules, but their previous syntheses have required the use of heavy metals and/or forcing conditions. Here, we describe the efficient application of the previously reported tert-butyl disulfide-protected amino acids and their use in the efficient, solid-phase synthesis of a series of lactam cyclic peptides under mild, metal-free conditions.
Collapse
Affiliation(s)
- Junyou Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Tingting Cui
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Shuaishuai Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yanyan Guo
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jingnan Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jun Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, 42096 Wuppertal, Germany
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
4
|
Ricardo MG, Vázquéz-Mena Y, Iglesias-Morales Y, Wessjohann LA, Rivera DG. On the scope of the double Ugi multicomponent stapling to produce helical peptides. Bioorg Chem 2021; 113:104987. [PMID: 34022444 DOI: 10.1016/j.bioorg.2021.104987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/19/2021] [Accepted: 05/08/2021] [Indexed: 11/15/2022]
Abstract
The stabilization of helical structures by peptide stapling approaches is now a mature technology capable to provide a variety of biomedical applications. Recently, it was shown that multicomponent macrocyclization is not only an effective way to introduce conformational constraints but it also allows to incorporate additional functionalities to the staple moiety in a one-pot process. This work investigates the scope of the double Ugi multicomponent stapling approach in its capacity to produce helical peptides from unstructured sequences. For this, three different stapling combinations were implemented and the CD spectra of the cyclic peptides were measured to determine the effect of the multicomponent macrocyclization on the resulting secondary structure. A new insight into some structural factors influencing the helicity type and content is provided, along with new prospects on the utilization of this methodology to diversify the molecular tethers linking the amino acid side chains.
Collapse
Affiliation(s)
- Manuel G Ricardo
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Yadiel Vázquéz-Mena
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba
| | - Yuleidys Iglesias-Morales
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Daniel G Rivera
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, Havana 10400, Cuba; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|