1
|
Li J, Zhong S, Zhou P, Li X, Xie D, Cai Y, Xia Y. Remote Radical Azidation of Unactivated C(sp 3)-H Bonds in Sulfamoyl Azides. Org Lett 2024; 26:3519-3523. [PMID: 38651932 DOI: 10.1021/acs.orglett.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
An efficient method for remote radical C(sp3)-H azidation at unactivated sites is described. C-H functionalization proceeds via intramolecular 1,5-hydrogen atom transfer to N-centered radicals that are generated via azido group transfer and/or fragmentation. The readily installed sulfamoyl azide serves as both an amidyl radical precursor and an azido source. This reaction features excellent site selectivity for tertiary, secondary, primary, and benzylic C(sp3)-H bonds and exhibits broad functional group compatibility.
Collapse
Affiliation(s)
- Jiawei Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Sishi Zhong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Pan Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Danyang Xie
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yong Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Du Z, Liu S, Li Y, Peng J, Sun Y, Song Y, Liu Y, Zeng X. Fluoroamide-Directed Regiodivergent C-Alkylation of Nitroalkanes. Org Lett 2023. [PMID: 37314942 DOI: 10.1021/acs.orglett.3c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, by exploiting different activation modes of fluoroamides, we achieved α- and δ-C(sp3)-H alkylation of nitroalkanes with switchable regioselectivity. Cu catalysis enabled the interception of a distal C-centered radical by a N-centered radical to couple nitroalkanes and unactivated δ-C-H bonds. In addition, imines generated in situ by fluoroamides were trapped by nitroalkanes to realize the α-C-H alkylation of amides. Both of those scalable protocols have broad substrate scopes and good functional group tolerance.
Collapse
Affiliation(s)
- Zhibin Du
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shiwen Liu
- College of Textiles and Clothing, Institute of Flexible Functional Materials, Yancheng Institute of Technology, Yancheng, Jiangsu 224000, China
| | - Yuke Li
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Junjie Peng
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanji Sun
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanshan Song
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yuxuan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaojun Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
3
|
Yang JW, Tan GQ, Liang KC, Xu KD, Su M, Liu F. Copper-Catalyzed, N-Directed Distal C(sp 3)-H Functionalization toward Azepanes. Org Lett 2022; 24:7796-7800. [PMID: 36264027 DOI: 10.1021/acs.orglett.2c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report a copper-catalyzed formal [5 + 2] aza-annulation of N-fluorosulfonamides and 1,3-dienes/1,3-enynes for synthesis of structurally diverse alkene/alkyne-containing azepanes. The reaction features selective functionalization of distal unactivated C(sp3)-H bonds and a broad substrate scope, thus allowing the late-stage modification of pharmaceuticals and natural products. A radical mechanism involving 1,5-hydrogen atom transfer of N-radicals, facile coupling of alkyl radicals with 1,3-dienes/1,3-enynes, and the construction of azepane motifs via C-N bond formation is proposed.
Collapse
Affiliation(s)
- Jia-Wen Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Guang-Qiang Tan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Kai-Cheng Liang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ke-Dong Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Wang Z, Hao J, Lv Y, Qu C, Yue H, Wei W. Additive‐Free Visible‐Light‐Initiated Three‐Component Cyanation and Azidation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhiwei Wang
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Jindong Hao
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yufen Lv
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chengming Qu
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Huilan Yue
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Wei
- Qufu Normal University Chemistry Jingxuan west road 57 number 273165 Qufu CHINA
| |
Collapse
|
5
|
Rui J, Zhao Q, Huls AJ, Soler J, Paris JC, Chen Z, Reshetnikov V, Yang Y, Guo Y, Garcia-Borràs M, Huang X. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp 3)-H azidation. Science 2022; 376:869-874. [PMID: 35587977 PMCID: PMC9933208 DOI: 10.1126/science.abj2830] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report the reprogramming of nonheme iron enzymes to catalyze an abiological C(sp3)‒H azidation reaction through iron-catalyzed radical relay. This biocatalytic transformation uses amidyl radicals as hydrogen atom abstractors and Fe(III)‒N3 intermediates as radical trapping agents. We established a high-throughput screening platform based on click chemistry for rapid evolution of the catalytic performance of identified enzymes. The final optimized variants deliver a range of azidation products with up to 10,600 total turnovers and 93% enantiomeric excess. Given the prevalence of radical relay reactions in organic synthesis and the diversity of nonheme iron enzymes, we envision that this discovery will stimulate future development of metalloenzyme catalysts for synthetically useful transformations unexplored by natural evolution.
Collapse
Affiliation(s)
- Jinyan Rui
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Qun Zhao
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anthony J. Huls
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jordi Soler
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Jared C. Paris
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zhenhong Chen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Viktor Reshetnikov
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yunfang Yang
- College of Chemical Enginering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA,Corresponding author. (X.H.); (M.G.B.); (Y.G.)
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain,Corresponding author. (X.H.); (M.G.B.); (Y.G.)
| | - Xiongyi Huang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.,Corresponding author. (X.H.); (M.G.B.); (Y.G.)
| |
Collapse
|
6
|
Zhang H, Yu F, Li C, Tian P, Zhou Y, Cao ZY. Iron-Catalyzed, Site-Selective Difluoromethylthiolation (-SCF 2H) and Difluoromethylselenation (-SeCF 2H) of Unactivated C(sp 3)-H Bonds in N-Fluoroamides. Org Lett 2021; 23:4721-4725. [PMID: 34080880 DOI: 10.1021/acs.orglett.1c01443] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The iron-catalyzed δ-C(sp3)-H bond difluoromethylthiolation and difluoromethylselenation of aliphatic amides with high site selectivity are reported. Essential to the success is the employment of an amide radical formed in situ to activate the inert C(sp3)-H bond and the utilization of the easily handled PhSO2SCF2H and PhSO2SeCF2H as coupling reagents under mild conditions. This scalable protocol exhibits a broad substrate scope bearing versatile functional groups. Mechanistic studies indicate that the reaction proceeds through -SCF2H and -SeCF2H radical transfer.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Fei Yu
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Chuang Li
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Peiyuan Tian
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yulu Zhou
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Zhou L, Wei S, Lei Z, Zhu G, Zhang Z. Transition-Metal-Free α Csp 3 -H Cyanation of Sulfonamides. Chemistry 2021; 27:7103-7107. [PMID: 33769613 DOI: 10.1002/chem.202100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 12/18/2022]
Abstract
This report describes the site-selective α-functionalization of sulfonylamide derivatives through the in-situ generation of imine intermediates. The N-F sulfonylamides, which could facilitate the elimination to generate imines, are coupled with TBACN to efficiently and mildly afford α-amino cyanides. Comparing with Strecker reaction, this transformation offers a complementary strategy to efficiently construct α-amino cyanides from direct α C-H functionalization of sulfonylamindes. The reaction is also characterized by broad substrate scope and flash chromatography column free workup. More importantly, the new two-electron pathway to generate imines through manipulation of the leaving group allows us to achieve excellent α site-selectivity.
Collapse
Affiliation(s)
- Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Siqi Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Ziran Lei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
8
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
9
|
Min QQ, Yang JW, Pang MJ, Ao GZ, Liu F. Copper-catalyzed, N-directed remote C(sp3)–H azidation and thiocyanation. Org Chem Front 2021. [DOI: 10.1039/d0qo01012j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mild and practical protocol is developed for the synthesis of distal azido and thiocyanato alkylamines via N-directed remote C(sp3)–H functionalization.
Collapse
Affiliation(s)
- Qing-Qiang Min
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| | - Jia-Wen Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| | - Meng-Juan Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| | - Gui-Zhen Ao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| |
Collapse
|
10
|
Ji YX, Li J, Li CM, Qu S, Zhang B. Manganese-Catalyzed N-F Bond Activation for Hydroamination and Carboamination of Alkenes. Org Lett 2020; 23:207-212. [PMID: 33305569 DOI: 10.1021/acs.orglett.0c03916] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A visible-light-promoted method for generating amidyl radicals from N-fluorosulfonamides via a manganese-catalyzed N-F bond activation strategy is reported. This protocol employs a simple manganese complex, Mn2(CO)10, as the precatalyst and a cheap silane, (MeO)3SiH, as both the hydrogen-atom donor and the F-atom acceptor, enabling intramolecular/intermolecular hydroaminations of alkenes, two-component carboamination of alkenes, and even three-component carboamination of alkenes. A wide range of valuable aliphatic sulfonamides can be readily prepared using these practical reactions.
Collapse
Affiliation(s)
- Yun-Xing Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jinxia Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chun-Min Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Abstract
A wide range of methodologies for the preparation of organic azides has been reported in the literature for many decades, due to their interest as building blocks for different transformations and their applications in biology as well as in materials science. More recently, with the spread of the use of transition metal-catalyzed reactions, new perspectives have also materialized in azidation processes, especially concerning the azidation of C–H bonds and direct difunctionalization of multiple carbon-carbon bonds. In this review, special emphasis will be placed on reactions involving substrates bearing a leaving group, hydroazidation reactions and azidation reactions that proceed with the formation of more than one bond. Further reactions for the preparation of allyl and vinyl azides as well as for azidations involving the opening of a ring complete the classification of the material.
Collapse
|