1
|
Szepesi Kovács D, Pásztor B, Ábrányi-Balogh P, Petri L, Imre T, Simon J, Tátrai E, Várady G, Tóvári J, Szijj PA, Keserű GM. Site-Selective Antibody Conjugation with Dibromopyrazines. Bioconjug Chem 2024; 35:1373-1379. [PMID: 39151068 PMCID: PMC11417993 DOI: 10.1021/acs.bioconjchem.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/18/2024]
Abstract
In recent years, antibody conjugates have evolved as state-of-the-art options for diagnostic and therapeutic applications. During site-selective antibody conjugation, incomplete rebridging of antibody chains limits the homogeneity of conjugates and calls for the development of new rebridging agents. Herein, we report a dibromopyrazine derivative optimized to reach highly homogeneous conjugates rapidly and with high conversion on rebridging of trastuzumab, even providing a feasible route for antibody modification in acidic conditions. Furthermore, coupling a fluorescent dye and a cytotoxic drug resulted in effective antibody conjugates with excellent serum stability and in vitro selectivity, demonstrating the utility of the dibromopyrazine rebridging agent to produce on-demand future antibody conjugates for diagnostic or therapeutic applications.
Collapse
Affiliation(s)
- Dénes Szepesi Kovács
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Bettina Pásztor
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - László Petri
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Institute
of Chemistry, Faculty of Science, Eötvös
Loránd University, Egyetem t. 1–3, H-1053 Budapest, Hungary
| | - Tímea Imre
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- MS
Metabolomics Research Laboratory, Research
Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - József Simon
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- MS
Metabolomics Research Laboratory, Research
Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Enikő Tátrai
- Department
of Experimental Pharmacology, National Institute
of Oncology, Ráth
György u. 7–9, H-1122 Budapest, Hungary
- National
Tumor Biology Laboratory, Ráth György u. 7–9, H-1122 Budapest, Hungary
| | - György Várady
- Molecular
Cell Biology Research Group, Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
| | - József Tóvári
- Department
of Experimental Pharmacology, National Institute
of Oncology, Ráth
György u. 7–9, H-1122 Budapest, Hungary
- National
Tumor Biology Laboratory, Ráth György u. 7–9, H-1122 Budapest, Hungary
| | - Peter A. Szijj
- Department
of Chemistry, University College London, WC1H 0AJ London, U.K.
| | - György M. Keserű
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
2
|
Zhang B, Wang M, Sun L, Liu J, Yin L, Xia M, Zhang L, Liu X, Cheng Y. Recent Advances in Targeted Cancer Therapy: Are PDCs the Next Generation of ADCs? J Med Chem 2024; 67:11469-11487. [PMID: 38980167 DOI: 10.1021/acs.jmedchem.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise antibodies, cytotoxic payloads, and linkers, which can integrate the advantages of antibodies and small molecule drugs to achieve targeted cancer treatment. However, ADCs also have some shortcomings, such as non-negligible drug resistance, a low therapeutic index, and payload-related toxicity. Many studies have focused on changing the composition of ADCs, and some have even further extended the concept and types of targeted conjugated drugs by replacing the targeted antibodies in ADCs with peptides, revolutionarily introducing peptide-drug conjugates (PDCs). This Perspective summarizes the current research status of ADCs and PDCs and highlights the structural innovations of ADC components. In particular, PDCs are regarded as the next generation of potential targeted drugs after ADCs, and the current challenges of PDCs are analyzed. Our aim is to offer fresh insights for the efficient design and expedited development of innovative targeted conjugated drugs.
Collapse
Affiliation(s)
- Baochen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Li Sun
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Jiawei Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Libinghan Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mingjing Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Yu Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| |
Collapse
|
3
|
Patel M, Forte N, Bishop CR, Porter MJ, Dagwell M, Karu K, Chudasama V, Baker JR. The Nitrile Bis-Thiol Bioconjugation Reaction. J Am Chem Soc 2024; 146:274-280. [PMID: 38124442 PMCID: PMC10786040 DOI: 10.1021/jacs.3c08762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Electron-poor aryl nitriles are promising reagents for bioconjugation due to their high electrophilicity and selectivity for reaction with thiols, albeit generally in a reversible manner. A transient species has previously been observed in such reactions, involving the addition of two thiols to the nitrile functional group, forming a tetrahedral amino dithioacetal (ADTA). In this work, the reaction of heteroaryl nitriles with bis-thiols is explored in an attempt to generate stable ADTAs, which could facilitate new bioconjugation protocols. By use of a 1,2-dithiol, or the incorporation of an electrophilic trap into the aryl nitrile design, the formation of stable products is achieved. The resultant "nitrile bis-thiol" (NBT) reaction is then explored in the context of protein modification, specifically to carry out antibody conjugation. By addition of these nitriles to the reduced disulfide bond of an antibody fragment, it is shown that, depending on the reagent design, cysteine-to-lysine transfer or disulfide bridged NBT products can be generated. Both represent site-selective conjugates and are shown to be stable when challenged with glutathione under physiological conditions and upon incubation in serum. Furthermore, the NBT reaction is tested in the more challenging context of a full antibody, and all four disulfide bonds are effectively modified by these new one-carbon bridging reagents. Overall, this reaction of heteroaryl-nitriles with bis-thiols is shown to be highly efficient and versatile, of tunable reversibility, and offers enticing prospects as a new addition to the toolbox of biocompatible "click"-type reactions.
Collapse
Affiliation(s)
- Mikesh Patel
- Department
of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.
| | - Nafsika Forte
- Department
of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.
| | - Charlie R. Bishop
- Department
of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.
| | - Michael J. Porter
- Department
of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.
| | - Matthew Dagwell
- Department
of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.
| | - Kersti Karu
- Department
of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.
| | - Vijay Chudasama
- Department
of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.
| | - James R. Baker
- Department
of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.
| |
Collapse
|
4
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
5
|
Zhao Y, Chudasama V, Baker JR. Trifunctional Dibromomaleimide Reagents Built Around A Lysine Scaffold Deliver Site-selective Dual-modality Antibody Conjugation. Chembiochem 2023; 24:e202300356. [PMID: 37548625 DOI: 10.1002/cbic.202300356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Indexed: 08/08/2023]
Abstract
We describe the synthesis and application of a selection of trifunctional reagents for the dual-modality modification of native, solvent accessible disulfide bonds in trastuzumab. The reagents were developed from the dibromomaleimide (DBM) platform with two orthogonal clickable functional groups built around a lysine core. We also describe the development of an aryl diselenide additive which enables antibody disulfide reduction in 4 minutes and a rapid overall reduction-bridging-double click sequence.
Collapse
Affiliation(s)
- Yanbo Zhao
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
| | - James R Baker
- Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK
| |
Collapse
|
6
|
Ochtrop P, Jahzerah J, Machui P, Mai I, Schumacher D, Helma J, Kasper MA, Hackenberger CPR. Compact hydrophilic electrophiles enable highly efficacious high DAR ADCs with excellent in vivo PK profile. Chem Sci 2023; 14:2259-2266. [PMID: 36873847 PMCID: PMC9977445 DOI: 10.1039/d2sc05678j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
The recent success of antibody-drug conjugates (ADC), exemplified by seven new FDA-approvals within three years, has led to increased attention for antibody based targeted therapeutics and fueled efforts to develop new drug-linker technologies for improved next generation ADCs. We present a highly efficient phosphonamidate-based conjugation handle that combines a discrete hydrophilic PEG-substituent, an established linker-payload and a cysteine-selective electrophile in one compact building block. This reactive entity provides homogeneous ADCs with a high drug-to-antibody ratio (DAR) of 8 in a one-pot reduction and alkylation protocol from non-engineered antibodies. The compact branched PEG-architecture introduces hydrophilicity without increasing the distance between antibody and payload, allowing the generation of the first homogeneous DAR 8 ADC from VC-PAB-MMAE without increased in vivo clearance rates. This high DAR ADC exhibits excellent in vivo stability and increased antitumor activity in tumour xenograft models relative to the established FDA approved VC-PAB-MMAE ADC Adcetris, clearly showing the benefit of the phosphonamidate based building-blocks as a general tool for the efficient and stable antibody-based delivery of highly hydrophobic linker-payload systems.
Collapse
Affiliation(s)
- Philipp Ochtrop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Chemical Biology Robert-Rössle-Strasse 10 13125 Berlin Germany .,Tubulis GmbH Am Klopferspitz 19 a 82152 Planegg-Martinsried Germany
| | - Jahaziel Jahzerah
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Chemical Biology Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Paul Machui
- Tubulis GmbH Am Klopferspitz 19 a 82152 Planegg-Martinsried Germany
| | - Isabelle Mai
- Tubulis GmbH Am Klopferspitz 19 a 82152 Planegg-Martinsried Germany
| | | | - Jonas Helma
- Tubulis GmbH Am Klopferspitz 19 a 82152 Planegg-Martinsried Germany
| | - Marc-André Kasper
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Chemical Biology Robert-Rössle-Strasse 10 13125 Berlin Germany .,Humboldt Universität zu Berlin, Department of Chemistry Brook-Taylor-Str.2 12489 Berlin Germany.,Tubulis GmbH Am Klopferspitz 19 a 82152 Planegg-Martinsried Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Chemical Biology Robert-Rössle-Strasse 10 13125 Berlin Germany .,Humboldt Universität zu Berlin, Department of Chemistry Brook-Taylor-Str.2 12489 Berlin Germany
| |
Collapse
|
7
|
Yu L, Shang Z, Jin Q, Chan SY, Hong W, Li N, Li P. Antibody-Antimicrobial Conjugates for Combating Antibiotic Resistance. Adv Healthc Mater 2023; 12:e2202207. [PMID: 36300640 DOI: 10.1002/adhm.202202207] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Indexed: 02/03/2023]
Abstract
As the development of new antibiotics lags far behind the emergence of drug-resistant bacteria, alternative strategies to resolve this dilemma are urgently required. Antibody-drug conjugate is a promising therapeutic platform to delivering cytotoxic payloads precisely to target cells for efficient disease treatment. Antibody-antimicrobial conjugates (AACs) have recently attracted considerable interest from researchers as they can target bacteria in the target sites and improve the effectiveness of drugs (i.e., reduced drug dosage and adverse effects), abating the upsurge of antimicrobial resistance. In this review, the selection and progress of three essential blocks that compose the AACs: antibodies, antimicrobial payloads, and linkers are discussed. The commonly used conjugation strategies and the latest applications of AACs in recent years are also summarized. The challenges and opportunities of this booming technology are also discussed at the end of this review.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518026, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
| | - Qizhe Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
8
|
Chrzastek A, Thanasi IA, Irving JA, Chudasama V, Baker JR. Dual reactivity disulfide bridging reagents; enabling new approaches to antibody fragment bioconjugation. Chem Sci 2022; 13:11533-11539. [PMID: 36320392 PMCID: PMC9555722 DOI: 10.1039/d2sc04531a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/16/2022] [Indexed: 01/27/2024] Open
Abstract
Disulfide bridging, also known as disulfide stapling, is a powerful strategy for the construction of site-selective protein bioconjugates. Here we describe the first examples of a new class of such reagents, containing a 'stable-labile' design. These dual-reactive reagents are designed to form a stable bond to one cysteine and a labile bond to the second; resulting in a robust attachment to the protein with one end of the bridge, whilst the other end serves as a reactive handle for subsequent bioconjugation. By incorporating thioesters into these bridges, we demonstrate that they are primed for native chemical ligation (NCL) with N-terminal cysteines; offering an alternative to the requirement for C-terminal thioesters for use in such ligations. Alternatively, the use of hydrazine as the ligating nucleophile enables a separate cargo to be attached to each cysteine residue, which are exploited to insert variably cleavable linkers. These methodologies are demonstrated on an antibody fragment, and serve to expand the scope of disulfide bridging strategies whilst offering a convenient route to the construction of multifunctional antibody fragment conjugates.
Collapse
Affiliation(s)
- Alina Chrzastek
- Department of Chemistry, University College London 20 Gordon Street WC1H OAJ London UK
| | - Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street WC1H OAJ London UK
| | - James A Irving
- UCL Respiratory, Rayne Institute, University College London WC1E 6JF London UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street WC1H OAJ London UK
| | - James R Baker
- Department of Chemistry, University College London 20 Gordon Street WC1H OAJ London UK
| |
Collapse
|
9
|
Thoreau F, Chudasama V. Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chem Biol 2022; 3:140-169. [PMID: 35360884 PMCID: PMC8826860 DOI: 10.1039/d1cb00082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
In the past two decades, immunotherapy has established itself as one of the leading strategies for cancer treatment, as illustrated by the exponentially growing number of related clinical trials. This trend was, in part, prompted by the clinical success of both immune checkpoint modulation and immune cell engagement, to restore and/or stimulate the patient's immune system's ability to fight the disease. These strategies were sustained by progress in bispecific antibody production. However, despite the decisive progress made in the treatment of cancer, toxicity and resistance are still observed in some cases. In this review, we initially provide an overview of the monoclonal and bispecific antibodies developed with the objective of restoring immune system functions to treat cancer (cancer immunotherapy), through immune checkpoint modulation, immune cell engagement or a combination of both. Their production, design strategy and impact on the clinical trial landscape are also addressed. In the second part, the concept of multispecific antibody formats, notably MuTICEMs (Multispecific Targeted Immune Cell Engagers & Modulators), as a possible answer to current immunotherapy limitations is investigated. We believe it could be the next step to take for cancer immunotherapy research and expose why bioconjugation chemistry might play a key role in these future developments.
Collapse
Affiliation(s)
- Fabien Thoreau
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
10
|
Walsh SJ, Omarjee S, Dannheim FM, Couturier DL, Bexheti D, Mendil L, Cronshaw G, Fewster T, Gregg C, Brodie C, Miller JL, Houghton R, Carroll JS, Spring DR. Divinylpyrimidine reagents generate antibody-drug conjugates with excellent in vivo efficacy and tolerability. Chem Commun (Camb) 2022; 58:1962-1965. [PMID: 35044383 PMCID: PMC9073851 DOI: 10.1039/d1cc06766d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
Abstract
The development of divinylpyrimidine (DVP) reagents for the synthesis of antibody-drug conjugates (ADCs) with in vivo efficacy and tolerability is reported. Detailed structural characterisation of the synthesised ADCs was first conducted followed by in vitro and in vivo evaluation of the ADCs' ability to safely and selectively eradicate target-positive tumours.
Collapse
Affiliation(s)
- Stephen J Walsh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Soleilmane Omarjee
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Friederike M Dannheim
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
- MRC Biostatistics Unit, University of Cambridge, UK
| | - Dorentina Bexheti
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Lee Mendil
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Gemma Cronshaw
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Toby Fewster
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Charlotte Gregg
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Cara Brodie
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Jodi L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Richard Houghton
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
11
|
Sornay C, Vaur V, Wagner A, Chaubet G. An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211563. [PMID: 35116160 PMCID: PMC8790347 DOI: 10.1098/rsos.211563] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
The bioconjugation of proteins-that is, the creation of a covalent link between a protein and any other molecule-has been studied for decades, partly because of the numerous applications of protein conjugates, but also due to the technical challenge it represents. Indeed, proteins possess inner physico-chemical properties-they are sensitive and polynucleophilic macromolecules-that make them complex substrates in conjugation reactions. This complexity arises from the mild conditions imposed by their sensitivity but also from selectivity issues, viz the precise control of the conjugation site on the protein. After decades of research, strategies and reagents have been developed to address two aspects of this selectivity: chemoselectivity-harnessing the reacting chemical functionality-and site-selectivity-controlling the reacting amino acid residue-most notably thanks to the participation of synthetic chemistry in this effort. This review offers an overview of these chemical bioconjugation strategies, insisting on those employing native proteins as substrates, and shows that the field is active and exciting, especially for synthetic chemists seeking new challenges.
Collapse
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| |
Collapse
|
12
|
Haim A, Neubacher S, Grossmann TN. Protein Macrocyclization for Tertiary Structure Stabilization. Chembiochem 2021; 22:2672-2679. [PMID: 34060202 PMCID: PMC8453710 DOI: 10.1002/cbic.202100111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Proteins possess unique molecular recognition capabilities and enzymatic activities, features that are usually tied to a particular tertiary structure. To make use of proteins for biotechnological and biomedical purposes, it is often required to enforce their tertiary structure in order to ensure sufficient stability under the conditions inherent to the application of interest. The introduction of intramolecular crosslinks has proven efficient in stabilizing native protein folds. Herein, we give an overview of methods that allow the macrocyclization of expressed proteins, discussing involved reaction mechanisms and structural implications.
Collapse
Affiliation(s)
- Anissa Haim
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Incircular B.V.De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute of Molecular and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
13
|
Javaid F, Pilotti C, Camilli C, Kallenberg D, Bahou C, Blackburn J, R Baker J, Greenwood J, Moss SE, Chudasama V. Leucine-rich alpha-2-glycoprotein 1 (LRG1) as a novel ADC target. RSC Chem Biol 2021; 2:1206-1220. [PMID: 34458833 PMCID: PMC8341842 DOI: 10.1039/d1cb00104c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Leucine-rich alpha-2-glycoprotein 1 (LRG1) is present abundantly in the microenvironment of many tumours where it contributes to vascular dysfunction, which impedes the delivery of therapeutics. In this work we demonstrate that LRG1 is predominantly a non-internalising protein. We report the development of a novel antibody-drug conjugate (ADC) comprising the anti-LRG1 hinge-stabilised IgG4 monoclonal antibody Magacizumab coupled to the anti-mitotic payload monomethyl auristatin E (MMAE) via a cleavable dipeptide linker using the site-selective disulfide rebridging dibromopyridazinedione (diBrPD) scaffold. It is demonstrated that this ADC retains binding post-modification, is stable in serum and effective in in vitro cell studies. We show that the extracellular LRG1-targeting ADC provides an increase in survival in vivo when compared against antibody alone and similar anti-tumour activity when compared against standard chemotherapy, but without undesired side-effects. LRG1 targeting through this ADC presents a novel and effective proof-of-concept en route to improving the efficacy of cancer therapeutics.
Collapse
Affiliation(s)
- Faiza Javaid
- UCL Department of Chemistry 20 Gordon Street London WC1H 0AJ UK
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - Camilla Pilotti
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - Carlotta Camilli
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - David Kallenberg
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - Calise Bahou
- UCL Department of Chemistry 20 Gordon Street London WC1H 0AJ UK
| | - Jack Blackburn
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - James R Baker
- UCL Department of Chemistry 20 Gordon Street London WC1H 0AJ UK
| | - John Greenwood
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - Stephen E Moss
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - Vijay Chudasama
- UCL Department of Chemistry 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
14
|
Farleigh M, Pham TT, Yu Z, Kim J, Sunassee K, Firth G, Forte N, Chudasama V, Baker JR, Long NJ, Rivas C, Ma MT. New Bifunctional Chelators Incorporating Dibromomaleimide Groups for Radiolabeling of Antibodies with Positron Emission Tomography Imaging Radioisotopes. Bioconjug Chem 2021; 32:1214-1222. [PMID: 33724798 PMCID: PMC8299457 DOI: 10.1021/acs.bioconjchem.0c00710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Indexed: 01/23/2023]
Abstract
Positron Emission Tomography (PET) imaging with antibody-based contrast agents frequently uses the radioisotopes [64Cu]Cu2+ and [89Zr]Zr4+. The macrobicyclic chelator commonly known as sarcophagine (sar) is ideal for labeling receptor-targeted biomolecules with [64Cu]Cu2+. The siderophore chelator, desferrioxamine-B (dfo), has been widely used to incorporate [89Zr]Zr4+ into antibodies. Here, we describe new bifunctional chelators of sar and dfo: these chelators have been functionalized with dibromomaleimides (dbm), that enable site-specific and highly stable attachment of molecular cargoes to reduced, solvent-accessible, interstrand native disulfide groups. The new sar-dbm and dfo-dbm derivatives can be easily conjugated with the IgG antibody trastuzumab via reaction with reduced interstrand disulfide groups to give site-specifically modified dithiomaleamic acid (dtm) conjugates, sar-dtm-trastuzumab and dfo-dtm-trastuzumab, in which interstrand disulfides are rebridged covalently with a small molecule linker. Both sar- and dfo-dtm-trastuzumab conjugates have been radiolabeled with [64Cu]Cu2+ and [89Zr]Zr4+, respectively, in near quantitative radiochemical yield (>99%). Serum stability studies, in vivo PET imaging, and biodistribution analyses using these radiolabeled immunoconjugates demonstrate that both [64Cu]Cu-sar-dtm-trastuzumab and [89Zr]Zr-dfo-dtm-trastuzumab possess high stability in biological milieu. Dibromomaleimide technology can be easily applied to enable stable, site-specific attachment of radiolabeled chelators, such as sar and dfo, to native interstrand disulfide regions of antibodies, enabling tracking of antibodies with PET imaging.
Collapse
Affiliation(s)
- Matthew Farleigh
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Truc Thuy Pham
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Zilin Yu
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Jana Kim
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Kavitha Sunassee
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - George Firth
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Nafsika Forte
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Vijay Chudasama
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - James R. Baker
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, U.K.
| | - Charlotte Rivas
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Michelle T. Ma
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| |
Collapse
|
15
|
Seki H, Walsh SJ, Bargh JD, Parker JS, Carroll J, Spring DR. Rapid and robust cysteine bioconjugation with vinylheteroarenes. Chem Sci 2021; 12:9060-9068. [PMID: 34276935 PMCID: PMC8261766 DOI: 10.1039/d1sc02722k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Methods for residue-selective and stable modification of canonical amino acids enable the installation of distinct functionality which can aid in the interrogation of biological processes or the generation of new therapeutic modalities. Herein, we report an extensive investigation of reactivity and stability profiles for a series of vinylheteroarene motifs. Studies on small molecule and protein substrates identified an optimum vinylheteroarene scaffold for selective cysteine modification. Utilisation of this lead linker to modify a number of protein substrates with various functionalities, including the synthesis of a homogeneous, stable and biologically active antibody-drug conjugate (ADC) was then achieved. The reagent was also efficient in labelling proteome-wide cysteines in cell lysates. The efficiency and selectivity of these reagents as well as the stability of the products makes them suitable for the generation of biotherapeutics or studies in chemical biology.
Collapse
Affiliation(s)
- Hikaru Seki
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Stephen J Walsh
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Cancer Research UK Cambridge Institute, University of Cambridge Robinson Way Cambridge CB2 0RE UK
| | - Jonathan D Bargh
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jeremy S Parker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield UK
| | - Jason Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge Robinson Way Cambridge CB2 0RE UK
| | - David R Spring
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
16
|
The Chemistry Behind ADCs. Pharmaceuticals (Basel) 2021; 14:ph14050442. [PMID: 34067144 PMCID: PMC8152005 DOI: 10.3390/ph14050442] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Combining the selective targeting of tumor cells through antigen-directed recognition and potent cell-killing by cytotoxic payloads, antibody-drug conjugates (ADCs) have emerged in recent years as an efficient therapeutic approach for the treatment of various cancers. Besides a number of approved drugs already on the market, there is a formidable follow-up of ADC candidates in clinical development. While selection of the appropriate antibody (A) and drug payload (D) is dictated by the pharmacology of the targeted disease, one has a broader choice of the conjugating linker (C). In the present paper, we review the chemistry of ADCs with a particular emphasis on the medicinal chemistry perspective, focusing on the chemical methods that enable the efficient assembly of the ADC from its three components and the controlled release of the drug payload.
Collapse
|
17
|
Oggianu M, Figus C, Ashoka-Sahadevan S, Monni N, Marongiu D, Saba M, Mura A, Bongiovanni G, Caltagirone C, Lippolis V, Cannas C, Cadoni E, Mercuri ML, Quochi F. Silicon-based fluorescent platforms for copper(ii) detection in water. RSC Adv 2021; 11:15557-15564. [PMID: 35481193 PMCID: PMC9029085 DOI: 10.1039/d1ra02695j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
The potential of silicon-based fluorescent platforms for the detection of trace toxic metal ions was investigated in an aqueous environment. To this aim, silicon chips were first functionalized with amino groups, and fluorescein organic dyes, used as sensing molecules, were then covalently linked to the surface via formation of thiourea groups. The obtained hybrid heterostructures exhibited high sensitivity and selectivity towards copper(ii), a limit of detection compatible with the recommended upper limits for copper in drinking water, and good reversibility using a standard metal-chelating agent. The fluorophore-analyte interaction mechanism at the basis of the reported fluorescence quenching, as well as the potential of performance improvement, were also studied. The herein presented sensing architecture allows, in principle, tailoring of the selectivity towards other metal ions by proper fluorophore selection, and provides a favorable outlook for integration of fluorescent chemosensors with silicon photonics technology.
Collapse
Affiliation(s)
- Mariangela Oggianu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Cristiana Figus
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Suchithra Ashoka-Sahadevan
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Noemi Monni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Daniela Marongiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Michele Saba
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Giovanni Bongiovanni
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Carla Cannas
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Maria Laura Mercuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Francesco Quochi
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| |
Collapse
|
18
|
Walsh SJ, Bargh JD, Dannheim FM, Hanby AR, Seki H, Counsell AJ, Ou X, Fowler E, Ashman N, Takada Y, Isidro-Llobet A, Parker JS, Carroll JS, Spring DR. Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev 2021; 50:1305-1353. [PMID: 33290462 DOI: 10.1039/d0cs00310g] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) harness the highly specific targeting capabilities of an antibody to deliver a cytotoxic payload to specific cell types. They have garnered widespread interest in drug discovery, particularly in oncology, as discrimination between healthy and malignant tissues or cells can be achieved. Nine ADCs have received approval from the US Food and Drug Administration and more than 80 others are currently undergoing clinical investigations for a range of solid tumours and haematological malignancies. Extensive research over the past decade has highlighted the critical nature of the linkage strategy adopted to attach the payload to the antibody. Whilst early generation ADCs were primarily synthesised as heterogeneous mixtures, these were found to have sub-optimal pharmacokinetics, stability, tolerability and/or efficacy. Efforts have now shifted towards generating homogeneous constructs with precise drug loading and predetermined, controlled sites of attachment. Homogeneous ADCs have repeatedly demonstrated superior overall pharmacological profiles compared to their heterogeneous counterparts. A wide range of methods have been developed in the pursuit of homogeneity, comprising chemical or enzymatic methods or a combination thereof to afford precise modification of specific amino acid or sugar residues. In this review, we discuss advances in chemical and enzymatic methods for site-specific antibody modification that result in the generation of homogeneous ADCs.
Collapse
Affiliation(s)
- Stephen J Walsh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Deonarain MP, Yahioglu G. Current strategies for the discovery and bioconjugation of smaller, targetable drug conjugates tailored for solid tumor therapy. Expert Opin Drug Discov 2021; 16:613-624. [PMID: 33275475 DOI: 10.1080/17460441.2021.1858050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: Antibody-Drug Conjugates (ADCs) have undergone a recent resurgence with 5 product approvals over the last 2 years but for those close to the field, it's been repeated cycles of setbacks and new innovations. A new wave of innovation is in the type of format used to deliver the cytotoxic payloads, with smaller bio-molecules being designed to have more optimal penetration and elimination properties tailored for solid tumors.Areas covered: In this review, the authors cover many of the recently described smaller-format drug conjugates (including formats such as diabodies, Fabs, scFvs, domain antibodies) with an emphasis on the types of conjugation technologies used to attach the chemical linker-payload.Expert opinion: Smaller formats are highly influenced by the structure of the linker-payload, arguably more-so than larger ADCs, so careful consideration is needed where solublising and pharmacokinetic modulation is required. High-quality conjugates are being developed with in vivo tumor efficacy and tolerability properties competitive with ADCs and with a few formats already in clinical development, we expect the pipeline to expand and to reach the market.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst, Hertfordshire, UK.,Department of Chemistry, Imperial College London, London, UK
| | - Gokhan Yahioglu
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst, Hertfordshire, UK.,Department of Chemistry, Imperial College London, London, UK
| |
Collapse
|