1
|
Kümper J, Mürtz SD, Guan Y, Kumari S, Hausoul PJC, Kurig N, Sautet P, Palkovits R. Metallic Impurities in Electrolysis: Catalytic Effect of Pb Traces in Reductive Amination and Acetone Reduction. Angew Chem Int Ed Engl 2024; 63:e202411532. [PMID: 39205488 DOI: 10.1002/anie.202411532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The electrochemical hydrogenation (e-hydrogenation) of unsaturated compounds like imines or carbonyls presents a benign reduction method. It enables direct use of electrons as reducing agent, water as proton source, while bypassing the need for elevated temperatures or pressures. In this contribution, we discuss the active species in electrocatalytic reductive amination with the transformation of acetone and methylamine as model reaction. Surprisingly, lead impurities in the ppm-range proved to possess a significant effect in e-hydrogenation. Accordingly, the influence of applied potential and cathode material in presence of 1 ppm Pb was investigated. Finally, we transferred the insights to the reduction of acetone manifesting comparable observations as for imine reduction. The results suggest that previous studies on electrochemical reduction in the presence of lead electrodes should be re-evaluated.
Collapse
Affiliation(s)
- Justus Kümper
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Sonja D Mürtz
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Yani Guan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531-J Boelter Hall, Los Angeles, CA 90095, USA
| | - Simran Kumari
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531-J Boelter Hall, Los Angeles, CA 90095, USA
| | - Peter J C Hausoul
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Nils Kurig
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531-J Boelter Hall, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 5531-J Boelter Hall, Los Angeles, CA 90095, USA
| | - Regina Palkovits
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Institute for Sustainable Hydrogen Economy (INW-2), Forschungszentrum Jülich, Marie-Curie-Str. 5, 52428, Jülich, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Sahroni I, Kodama T, Ahmad MS, Nakahara T, Inomata Y, Kida T. Graphene Oxide Membrane Reactor for Electrochemical Deuteration Reactions. NANO LETTERS 2024; 24:3590-3597. [PMID: 38489112 DOI: 10.1021/acs.nanolett.3c04243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The deuteration of organic molecules is considerably important in organic and medicinal chemistry. An electrochemical membrane reactor using proton-conducting graphene oxide (GO) nanosheets was developed to synthesize valuable deuterium-labeled products via an efficient hydrogen-to-deuterium (H/D) exchange under mild conditions at ambient temperature and atmospheric pressure. Deuterons (D+) formed by the anodic oxidation of heavy water (D2O) at the Pt/C anode permeate through the GO membrane to the Pt/C cathode, where organic molecules with functional groups (C≡C and C═O) are deuterated with adsorbed atomic D species. Deuteration occurs in outstanding yields with high levels of D incorporation. We also achieved the electrodeuteration of a drug molecule, ibuprofen, demonstrating the promising feasibility of the GO membrane reactor in the pharmaceutical industry.
Collapse
Affiliation(s)
- Imam Sahroni
- Graduate School of Science and Technology, Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Sleman, Yogyakarta 55584, Indonesia
| | - Taiga Kodama
- Graduate School of Science and Technology, Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan
| | - Muhammad Sohail Ahmad
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, Kumamoto 860-8555, Japan
| | - Takeru Nakahara
- Graduate School of Science and Technology, Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan
| | - Yusuke Inomata
- Graduate School of Science and Technology, Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan
| | - Tetsuya Kida
- Graduate School of Science and Technology, Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
3
|
Fan Y, Ou W, Chen M, Liu Y, Zhang B, Ruan W, Su C. Metal-Free Electrochemically Reductive Deuteration of C═N Bonds with D 2O toward Deuterated Amines. Org Lett 2023; 25:432-437. [PMID: 36607227 DOI: 10.1021/acs.orglett.2c04154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Environmentally friendly and highly efficient synthesis of α-deuterated amines is achieved via a concise electrochemical process using D2O as deuterium source without any external reductants or catalysts. Various imines are compatible, affording the desired products in high yields and D-incorporation. Gram-scale synthesis and flow-cell electrochemistry technology are used to synthesize deuterated pharmaceutical amines and their intermediates. Mechanistic studies reveal a plausible process, including the formation of carbanion species followed by deuterium atom transfer.
Collapse
Affiliation(s)
- Yang Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Mengyin Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yubing Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wenqing Ruan
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
4
|
Wang A, Liu X, Gao W, Ma L, Liu S, Zhang G, Zhou M, Jia X, Chen J. Cathode enabled high faradaic efficiency: reduction of imines to amines with H 2O as a H-source. Chem Commun (Camb) 2022; 58:9906-9909. [PMID: 35975808 DOI: 10.1039/d2cc03479d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benefiting from a high overpotential of the competitive hydrogen evolution reaction with a carbon paper cathode, the desired electrochemical reduction of imines was achieved with high faradaic efficiency by using H2O as a H-source. With this sustainable atom-economic strategy, a series of potentially versatile amines were obtained in medium-to-high yields (49-86%).
Collapse
Affiliation(s)
- Aihua Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Xin Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Guofeng Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Mingyang Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| |
Collapse
|
5
|
Abstract
Deuterated chemicals are becoming irreplaceable in pharmaceutical engineering, material science and synthetic chemistry. Many excellent reviews have discussed acid/base-dependent or metal-catalyzed deuteration reactions, but radical deuterations have been discussed less. With the development of radical chemistry, there has been a rapid growth in radical deuterium-labelling technology. Diverse mild, cheap and efficient strategies for deuterium atom installation have been reported, and this review summarizes the recent achievements of radical deuteration classified by the reaction types.
Collapse
Affiliation(s)
- Nian Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yantao Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiaopeng Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
6
|
Wang S, Feng T, Wang Y, Qiu Y. Recent Advances in Electrocarboxylation with CO2. Chem Asian J 2022; 17:e202200543. [DOI: 10.1002/asia.202200543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Siyi Wang
- China University of Mining and Technology School of Chemical Engineering & Technology CHINA
| | - Tian Feng
- Nankai University College of Chemistry CHINA
| | - Yanwei Wang
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
7
|
Ou W, Qiu C, Su C. Photo- and electro-catalytic deuteration of feedstock chemicals and pharmaceuticals: A review. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63928-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Norcott PL. Current Electrochemical Approaches to Selective Deuteration. Chem Commun (Camb) 2022; 58:2944-2953. [DOI: 10.1039/d2cc00344a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective deuteration of organic molecules through electrochemistry is proving to be an effective alternative to conventional 2H labelling strategies, which traditionally require high temperatures, high pressures of deuterium gas...
Collapse
|
9
|
Kaboudin B, Behroozi M, Sadighi S. Recent advances in the electrochemical reactions of nitrogen-containing organic compounds. RSC Adv 2022; 12:30466-30479. [PMCID: PMC9597858 DOI: 10.1039/d2ra04087e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The electrochemical reaction of amines, nitriles, amides, nitroaromatics, and imines has been proven to be a valuable method for the synthesis of various nitrogen-containing organic compounds.
Collapse
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Milad Behroozi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Sepideh Sadighi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
10
|
Yang J, Qin H, Yan K, Cheng X, Wen J. Advances in Electrochemical Hydrogenation Since 2010. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jianjing Yang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 People's Republic of China
| | - Hongyun Qin
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 People's Republic of China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 People's Republic of China
| | - Xingda Cheng
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 People's Republic of China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 People's Republic of China
| |
Collapse
|
11
|
Zou Z, Cai G, Chen W, Zou C, Li Y, Wu H, Chen L, Hu J, Li Y, Huang Y. Metal-Free Cascade Formation of Intermolecular C-N Bonds Accessing Substituted Isoindolinones under Cathodic Reduction. J Org Chem 2021; 86:15777-15784. [PMID: 34699211 DOI: 10.1021/acs.joc.1c01845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An electrochemical protocol for the construction of substituted isoindolinones via reduction/amidation of 2-carboxybenzaldehydes and amines has been realized. Under metal-free and external-reductant-free electrolytic conditions, the reaction achieves the cascade formation of intermolecular C-N bonds and provides a series of isoindolinones in moderate to good yields. The deuterium-labeling experiment proves that the hydrogen in the methylene of the product is mainly provided by H2O in the system.
Collapse
Affiliation(s)
- Zirong Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Genuo Cai
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Weihao Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Canlin Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yamei Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Hongting Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| |
Collapse
|