1
|
Luo S, Pham HDM, Li CC, Qiu Z, Cheng R, Khaliullin RZ, Li CJ. Anti-Markovnikov Hydroalkylation of Styrene Derivatives via Hydrazones Catalyzed by Ru-PNP Complex. Org Lett 2024; 26:3004-3009. [PMID: 38573817 DOI: 10.1021/acs.orglett.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A well-defined Ru(II)-PNP complex demonstrated high activity in the anti-Markovnikov hydroalkylation of nonpolarized terminal alkenes via hydrazones. Hydrazone served as a carbanion equivalent to combine with the electrophilic alkene substrate upon activation by the ruthenium catalyst, forming a new C-C bond in a concerted pathway with N2 as the only theoretical byproduct. Experimental and computational studies suggested the existence of a push-pull interaction that activated the alkene for hydrazone addition and then deduced the mechanism.
Collapse
Affiliation(s)
- Siyi Luo
- Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Hanh D M Pham
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Chen-Chen Li
- Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Zihang Qiu
- Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Ruofei Cheng
- Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Rustam Z Khaliullin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
2
|
Xiang Y, Du R, Wang S, Wu X, Tang J, Yang F, Xing D. KOtBu-catalysed α-homoallylic alkylation of acyclic amides with 1-aryl-1,3-dienes. Mol Divers 2022:10.1007/s11030-022-10503-8. [PMID: 36001226 DOI: 10.1007/s11030-022-10503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Herein, we report a KOtBu-catalysed α-homoallylic alkylation of acyclic amides with 1-aryl-1,3-dienes. With this transition metal-free and atom-economic protocol, a series of α-homoallylic alkylated acyclic amides were synthesized in good to excellent yields. This transformation is proposed to proceed through a cation-π interaction-based C-C bond formation from the in situ-generated potassium enolate with the diene unit.
Collapse
Affiliation(s)
- Yunfei Xiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Ruisheng Du
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiang Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
3
|
Boiledieu W, De Abreu M, Cuyamendous C, Lamaa D, Belmont P, Brachet E. Photoredox synthesis of 6- and 7-membered ring scaffolds via N-centered radicals. Chem Commun (Camb) 2022; 58:9206-9209. [PMID: 35894850 DOI: 10.1039/d2cc02780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Containing heterocycles are important scaffolds due to their ubiquitous presence in bioactive compounds. Their synthesis has been considered as an important research field. In this work we report the access to 6- and 7-membered rings via a photoinduced strategy. To our knowledge, this work represents the first exemple of photo-induced 7-endo-trig cyclization with N-centered radicals.
Collapse
Affiliation(s)
- William Boiledieu
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France.
| | - Maxime De Abreu
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France.
| | - Claire Cuyamendous
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France.
| | - Diana Lamaa
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France.
| | - Philippe Belmont
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France.
| | - Etienne Brachet
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France.
| |
Collapse
|
4
|
Kim M, You E, Kim J, Hong S. Site-Selective Pyridylic C-H Functionalization by Photocatalytic Radical Cascades. Angew Chem Int Ed Engl 2022; 61:e202204217. [PMID: 35481719 DOI: 10.1002/anie.202204217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/08/2022]
Abstract
An efficient pyridylic C(sp3 )-H functionalization has been developed through photocatalytic radical-mediated fluoroalkylation or cascade reactions. This method is enabled by the reversible formation of alkylidene dihydropyridine intermediates via the facile enolate formation of C4-alkyl N-amidopyridinium salts in the absence of an external base, thereby establishing the conditions necessary for subsequent intermolecular radical trapping. Rapid structural diversification of the pyridylic site can be achieved through photocatalytic multicomponent cascade reactions involving alkene trifluoromethylation, SO2 -reincorporation, and sulfonyl radical addition. This operationally simple method features a broad substrate scope and high chemoselectivity and offers a unique approach for the rational modification of the heterobenzylic C-H bonds of pyridines and quinolines with uniform site-selective control. Furthermore, experimental and theoretical studies were performed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Myojeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Euna You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jieun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Glaser F, Wenger OS. Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. JACS AU 2022; 2:1488-1503. [PMID: 35783177 PMCID: PMC9241018 DOI: 10.1021/jacsau.2c00265] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 05/11/2023]
Abstract
Photoredox catalysis typically relies on the use of single chromophores, whereas strategies, in which two different light absorbers are combined, are rare. In photosystems I and II of green plants, the two separate chromophores P680 and P700 both absorb light independently of one another, and then their excitation energy is combined in the so-called Z-scheme, to drive an overall reaction that is thermodynamically very demanding. Here, we adapt this concept to perform photoredox reactions on organic substrates with the combined energy input of two red photons instead of blue or UV light. Specifically, a CuI bis(α-diimine) complex in combination with in situ formed 9,10-dicyanoanthracenyl radical anion in the presence of excess diisopropylethylamine catalyzes ca. 50 dehalogenation and detosylation reactions. This dual photoredox approach seems useful because red light is less damaging and has a greater penetration depth than blue or UV radiation. UV-vis transient absorption spectroscopy reveals that the subtle change in solvent from acetonitrile to acetone induces a changeover in the reaction mechanism, involving either a dominant photoinduced electron transfer or a dominant triplet-triplet energy transfer pathway. Our study illustrates the mechanistic complexity in systems operating under multiphotonic excitation conditions, and it provides insights into how the competition between desirable and unwanted reaction steps can become more controllable.
Collapse
|
6
|
Kim M, You E, Kim J, Hong S. Site‐Selective Pyridylic C–H Functionalization by Photocatalytic Radical Cascades. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Myojeong Kim
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Euna You
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Jieun Kim
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Sungwoo Hong
- Korea Advanced Institute of Science and Technology KAIST Department of Chemistry Yusung Gu (KAIST) 34141 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
7
|
Mandigma MJP, Žurauskas J, MacGregor CI, Edwards LJ, Shahin A, d'Heureuse L, Yip P, Birch DJS, Gruber T, Heilmann J, John MP, Barham JP. An organophotocatalytic late-stage N-CH 3 oxidation of trialkylamines to N-formamides with O 2 in continuous flow. Chem Sci 2022; 13:1912-1924. [PMID: 35308839 PMCID: PMC8849051 DOI: 10.1039/d1sc05840a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/26/2021] [Indexed: 12/25/2022] Open
Abstract
We report an organophotocatalytic, N-CH3-selective oxidation of trialkylamines in continuous flow. Based on the 9,10-dicyanoanthracene (DCA) core, a new catalyst (DCAS) was designed with solubilizing groups for flow processing. This allowed O2 to be harnessed as a sustainable oxidant for late-stage photocatalytic N-CH3 oxidations of complex natural products and active pharmaceutical ingredients bearing functional groups not tolerated by previous methods. The organophotocatalytic gas-liquid flow process affords cleaner reactions than in batch mode, in short residence times of 13.5 min and productivities of up to 0.65 g per day. Spectroscopic and computational mechanistic studies showed that catalyst derivatization not only enhanced solubility of the new catalyst compared to poorly-soluble DCA, but profoundly diverted the photocatalytic mechanism from singlet electron transfer (SET) reductive quenching with amines toward energy transfer (EnT) with O2.
Collapse
Affiliation(s)
- Mark John P Mandigma
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Jonas Žurauskas
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Callum I MacGregor
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Lee J Edwards
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Ahmed Shahin
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
- Chemistry Department, Faculty of Science, Benha University 13518 Benha Egypt
| | - Ludwig d'Heureuse
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Philip Yip
- Department of Physics, SUPA, University of Strathclyde 107 Rottenrow East Glasgow G4 0NG UK
| | - David J S Birch
- Department of Physics, SUPA, University of Strathclyde 107 Rottenrow East Glasgow G4 0NG UK
| | - Thomas Gruber
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Jörg Heilmann
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Matthew P John
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| |
Collapse
|
8
|
Liu J, Wu C, Hu T, Yang W, Xie Y, Shi Y, Liu Q, Shao Y, Zhang F. Hexamethyldisilazane Lithium (LiHMDS)-Promoted Hydroboration of Alkynes and Alkenes with Pinacolborane. J Org Chem 2022; 87:3442-3452. [PMID: 35143184 DOI: 10.1021/acs.joc.1c03012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lithium-promoted hydroboration of alkynes and alkenes using commercially available hexamethyldisilazane lithium as a precatalyst and HBpin as a hydride source has been developed. This method will be appealing for organic synthesis because of its remarkable substrate tolerance and good yields. Mechanistic studies revealed that the hydroboration proceeds through the in situ-formed BH3 species, which acts to drive the turnover of the hydroboration of alkynes and alkenes.
Collapse
Affiliation(s)
- Jichao Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Caiyan Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tinghui Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wei Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yaoyao Xie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinyin Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qianrui Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
9
|
Wang S, Xiang Y, Chen T, Wu X, Xing D. Construction of quaternary carbon centers by KOtBu-catalyzed α-homoallylic alkylation of lactams with 1,3-dienes. Org Chem Front 2022. [DOI: 10.1039/d1qo01927a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a KOtBu-catalyzed α-homoallylic alkylation of lactams with 1,3-dienes.
Collapse
Affiliation(s)
- Shang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yunfei Xiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Tiantian Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiang Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
10
|
Gu Y, Zhang Z, Wang YE, Dai Z, Yuan Y, Xiong D, Li J, Walsh PJ, Mao J. Benzylic Aroylation of Toluenes Mediated by a LiN(SiMe 3) 2/Cs + System. J Org Chem 2021; 87:406-418. [PMID: 34958592 DOI: 10.1021/acs.joc.1c02446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemoselective deprotonative functionalization of benzylic C-H bonds is challenging, because the arene ring contains multiple aromatic C(sp2)-H bonds, which can be competitively deprotonated and lead to selectivity issues. Recently it was found that bimetallic [MN(SiMe3)2 M = Li, Na]/Cs+ combinations exhibit excellent benzylic selectivity. Herein, is reported the first deprotonative addition of toluenes to Weinreb amides mediated by LiN(SiMe3)2/CsF for the synthesis of a diverse array of 2-arylacetophenones. Surprisingly, simple methyl benzoates also react with toluenes under similar conditions to form 2-arylacetophenones without double addition to give tertiary alcohol products. This finding greatly increases the practicality and impact of this chemistry. Some challenging substrates with respect to benzylic deprotonations, such as fluoro and methoxy substituted toluenes, are selectively transformed to 2-aryl acetophenones. The value of benzylic deprotonation of 3-fluorotoluene is demonstrated by the synthesis of a key intermediate in the preparation of Polmacoxib.
Collapse
Affiliation(s)
- Yuanyun Gu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhen Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ziteng Dai
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yaqi Yuan
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jie Li
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
11
|
Pang JH, Wang B, Watanabe K, Takita R, Chiba S. Hydroalkylation of Styrenes with Benzylamines by Potassium Hydride. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia Hao Pang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Bin Wang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
12
|
Kaur J, Shahin A, Barham JP. Photocatalyst-Free, Visible-Light-Mediated C(sp3)–H Arylation of Amides via a Solvent-Caged EDA Complex. Org Lett 2021; 23:2002-2006. [PMID: 33596084 DOI: 10.1021/acs.orglett.1c00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jaspreet Kaur
- Universität Regensburg, Fakultät für Chemie und Pharmazie, 93040 Regensburg, Germany
| | - Ahmed Shahin
- Universität Regensburg, Fakultät für Chemie und Pharmazie, 93040 Regensburg, Germany
- Chemistry Department, Faculty of Science, Benha University, 13518 Benha, Egypt
| | - Joshua P. Barham
- Universität Regensburg, Fakultät für Chemie und Pharmazie, 93040 Regensburg, Germany
| |
Collapse
|
13
|
Liu X, Sotiropoulos JM, Taillefer M. An alternative mode to activate alcohols: application to the synthesis of N-heteroarene derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00930c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of primary alcohols in the presence of KOtBu/DMF allowed the synthesis of N-heteroarenes via the alkylation of the C(sp3)–H bond of methyl azaarenes. A mechanism involving the formation of an alkyl formate intermediate is proposed.
Collapse
Affiliation(s)
- Xiaoping Liu
- ICGM, Université de Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | | | - Marc Taillefer
- ICGM, Université de Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| |
Collapse
|