1
|
Romero Reyes MA, Dutta S, Odagi M, Min C, Seidel D. Catalytic enantioselective synthesis of 2-pyrazolines via one-pot condensation/6π-electrocyclization: 3,5-bis(pentafluorosulfanyl)-phenylthioureas as powerful hydrogen bond donors. Chem Sci 2024; 15:d4sc04760e. [PMID: 39239480 PMCID: PMC11369865 DOI: 10.1039/d4sc04760e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024] Open
Abstract
A new conjugate-base-stabilized carboxylic acid (CBSCA) containing a 3,5-bis(pentafluorosulfanyl)phenylthiourea functionality catalyses challenging one-pot condensations/6π-electrocyclizations of hydrazines and α,β-unsaturated ketones under mild conditions. Structurally diverse N-aryl 2-pyrazolines are obtained in good yields and enantioselectivities. The superior performance of 3,5-bis(SF5)phenylthioureas over the widely used 3,5-bis(CF3)phenylthioureas is further demonstrated in the Michael addition of dimethyl malonate to nitrostyrene, using a new Takemoto-type catalyst.
Collapse
Affiliation(s)
- Moises A Romero Reyes
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Minami Odagi
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Chang Min
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey Piscataway New Jersey 08854 USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| |
Collapse
|
2
|
Hu X, Zhu Z, Li Z, Adili A, Odagi M, Abboud KA, Seidel D. Catalytic Enantioselective [4+2] Cycloadditions of Salicylaldehyde Acetals with Enol Ethers. Angew Chem Int Ed Engl 2024; 63:e202315759. [PMID: 38055210 DOI: 10.1002/anie.202315759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
A readily accessible conjugate-base-stabilized carboxylic acid (CBSCA) catalyst facilitates highly enantioselective [4+2] cycloaddition reactions of salicylaldehyde-derived acetals and cyclic enol ethers, resulting in the formation of polycyclic chromanes with oxygenation in the 2- and 4-positions. Stereochemically more complex products can be obtained from racemic enol ethers. Spirocyclic products are also accessible.
Collapse
Affiliation(s)
- Xiaojun Hu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhengbo Zhu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongzheng Li
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Alafate Adili
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Minami Odagi
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588, Tokyo, Japan
| | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Rose BT, Timmerman JC, Bawel SA, Chin S, Zhang H, Denmark SE. High-Level Data Fusion Enables the Chemoinformatically Guided Discovery of Chiral Disulfonimide Catalysts for Atropselective Iodination of 2-Amino-6-arylpyridines. J Am Chem Soc 2022; 144:22950-22964. [DOI: 10.1021/jacs.2c08820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Brennan T. Rose
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IIllinois 61801, United States
| | - Jacob C. Timmerman
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Seth A. Bawel
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IIllinois 61801, United States
| | - Steven Chin
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Haiming Zhang
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Scott E. Denmark
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IIllinois 61801, United States
| |
Collapse
|
4
|
Cruz H, Servín FA, Aguirre G, Pérez S, Madrigal D, Chávez D, Cooksy AL, Somanathan R. Chiral C 2 -symmetric bis-thioureas as enzyme mimics in enantioselective Michael addition. Chirality 2022; 34:877-886. [PMID: 35303374 DOI: 10.1002/chir.23438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022]
Abstract
We report herein the synthesis and application of enantiopure C2 -symmetric primary amine-1,3-bis-thiourea organocatalysts in enantioselective conjugate 1,4-Michael addition of carbonyl containing nucleophiles, to nitroalkenes and N-phenylmaleimide, leading to final products in good enantioselectivities (up to 99%) and yields (up to 99%). We propose supramolecular noncovalent interactions within the organocatalyst's cleft between the substrate and the catalyst, via hydrogen bonding. Supramolecular interaction thus lowers the transition state energy mimicking an enzyme. Mechanism underlying our experimental results is supported by theorical calculations.
Collapse
Affiliation(s)
- Harold Cruz
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, Mexico
| | - Felipe A Servín
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, Mexico
| | - Gerardo Aguirre
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, Mexico
| | - Sergio Pérez
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, Mexico
| | - Domingo Madrigal
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, Mexico
| | - Daniel Chávez
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, Mexico
| | - Andrew L Cooksy
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Ratnasamy Somanathan
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, Mexico
| |
Collapse
|
5
|
del Corte X, Martínez de Marigorta E, Palacios F, Vicario J, Maestro A. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to CO and CN bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo01209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2004, chiral phosphoric acids (CPAs) have emerged as highyl efficient organocatalysts, providing excellent results in a wide reaction scope. In this review, the applications of CPA for enantioselective additions to CO and CN bonds are covered.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
6
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Žabka M, Gschwind RM. Ternary complexes of chiral disulfonimides in transfer-hydrogenation of imines: the relevance of late intermediates in ion pair catalysis. Chem Sci 2021; 12:15263-15272. [PMID: 34976346 PMCID: PMC8635212 DOI: 10.1039/d1sc03724b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/22/2021] [Indexed: 01/29/2023] Open
Abstract
In ion pairing catalysis, the structures of late intermediates and transition states are key to understanding and further development of the field. Typically, a plethora of transition states is explored computationally. However, especially for ion pairs the access to energetics via computational chemistry is difficult and experimental data is rare. Here, we present for the first time extensive NMR spectroscopic insights about the ternary complex of a catalyst, substrate, and reagent in ion pair catalysis exemplified by chiral Brønsted acid-catalyzed transfer hydrogenation. Quantum chemistry calculations were validated by a large amount of NMR data for the structural and energetic assessment of binary and ternary complexes. In the ternary complexes, the expected catalyst/imine H-bond switches to an unexpected O-H-N structure, not yet observed in the multiple hydrogen-bond donor-acceptor situation such as disulfonimides (DSIs). This arrangement facilitates the hydride transfer from the Hantzsch ester in the transition states. In these reactions with very high isomerization barriers preventing fast pre-equilibration, the reaction barriers from the ternary complex to the transition states determine the enantioselectivity, which deviates from the relative transition state energies. Overall, the weak hydrogen bonding, the hydrogen bond switching and the special geometrical adaptation of substrates in disulfonimide catalyst complexes explain the robustness towards more challenging substrates and show that DSIs have the potential to combine high flexibility and high stereoselectivity.
Collapse
Affiliation(s)
- Matej Žabka
- Institute of Organic Chemistry, University of Regensburg D-93053 Regensburg Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, University of Regensburg D-93053 Regensburg Germany
| |
Collapse
|
8
|
Caballero-García G, Goodman JM. N-Triflylphosphoramides: highly acidic catalysts for asymmetric transformations. Org Biomol Chem 2021; 19:9565-9618. [PMID: 34723293 DOI: 10.1039/d1ob01708j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
N-Triflylphosphoramides (NTPA), have become increasingly popular catalysts in the development of enantioselective transformations as they are stronger Brønsted acids than the corresponding phosphoric acids (PA). Their highly acidic, asymmetric active site can activate difficult, unreactive substrates. In this review, we present an account of asymmetric transformations using this type of catalyst that have been reported in the past ten years and we classify these reactions using the enantio-determining step as the key criterion. This compendium of NTPA-catalysed reactions is organised into the following categories: (1) cycloadditions, (2) electrocyclisations, polyene and related cyclisations, (3) addition reactions to imines, (4) electrophilic aromatic substitutions, (5) addition reactions to carbocations, (6) aldol and related reactions, (7) addition reactions to double bonds, and (8) rearrangements and desymmetrisations. We highlight the use of NTPA in total synthesis and suggest mnemonics which account for their enantioselectivity.
Collapse
Affiliation(s)
| | - Jonathan M Goodman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| |
Collapse
|
9
|
Takagi R, Duong DT, Ichiki T. Disulfonimide catalyzed asymmetric intramolecular hydroamination of alkenyl thioureas: Concentration effect in the hydroamination. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Antenucci A, Marra F, Dughera S. Silica gel-immobilised chiral 1,2-benzenedisulfonimide: a Brønsted acid heterogeneous catalyst for enantioselective multicomponent Passerini reaction. RSC Adv 2021; 11:26083-26092. [PMID: 35479468 PMCID: PMC9037113 DOI: 10.1039/d1ra05297g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
A chiral heterogeneous catalyst derivative of (−)-4,5-dimethyl-3,6-bis(1-naphthyl)-1,2-benzenedisulfonimide is proven here to be efficient in a three-component asymmetric Passerini protocol, carried out in a deep eutectic solvent. Reaction conditions are mild and green, while enantioselectivity is excellent. The catalyst was easily recovered and reused with no decrease in its catalytic activity. A chiral heterogeneous catalyst derivative of (−)-4,5-dimethyl-3,6-bis(1-naphthyl)-1,2-benzenedisulfonimide is proven here to be efficient in a three-component asymmetric Passerini protocol, carried out in a deep eutectic solvent.![]()
Collapse
Affiliation(s)
- Achille Antenucci
- Dipartimnto di Chimica, Università di Torino C.so Massimo d'Azeglio 48 10125 Torino Italy.,NIS Interdepartmental Centre, Reference Centre for INSTM, Università di Torino via Gioacchino Quarello 15/A 10135 Torino Italy
| | - Francesco Marra
- Dipartimnto di Chimica, Università di Torino C.so Massimo d'Azeglio 48 10125 Torino Italy
| | - Stefano Dughera
- Dipartimnto di Chimica, Università di Torino C.so Massimo d'Azeglio 48 10125 Torino Italy
| |
Collapse
|
11
|
Antenucci A, Dughera S, Renzi P. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. CHEMSUSCHEM 2021; 14:2785-2853. [PMID: 33984187 PMCID: PMC8362219 DOI: 10.1002/cssc.202100573] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Indexed: 05/30/2023]
Abstract
Can green chemistry be the right reading key to let organocatalyst design take a step forward towards sustainable catalysis? What if the intriguing chemistry promoted by more engineered organocatalysts was carried on by using renewable and naturally occurring molecular scaffolds, or at least synthetic catalysts more respectful towards the principles of green chemistry? Within the frame of these questions, this Review will tackle the most commonly occurring organic chiral catalysts from the perspective of their synthesis rather than their employment in chemical methodologies or processes. A classification of the catalyst scaffolds based on their E factor will be provided, and the global E factor (EG factor) will be proposed as a new green chemistry metric to consider, also, the synthetic route to the catalyst within a given organocatalytic process.
Collapse
Affiliation(s)
- Achille Antenucci
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
- NIS Interdeprtmental CentreINSTM Reference CentreUniversity of TurinVia Gioacchino Quarello 15/A10135TurinItaly
| | - Stefano Dughera
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| | - Polyssena Renzi
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| |
Collapse
|