1
|
Viet Phong N, Thi Nguyet Anh D, Yeong Chae H, Young Yang S, Jeong Kwon M, Sun Min B, Ah Kim J. Anti-inflammatory activity and cytotoxicity against ovarian cancer cell lines by amide alkaloids and piperic esters isolated from Piper longum fruits: In vitro assessments and molecular docking simulation. Bioorg Chem 2022; 128:106072. [PMID: 35944468 DOI: 10.1016/j.bioorg.2022.106072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/18/2022]
Abstract
Three new amide alkaloids, piperlongumamides D-F (14, 19, and 32); a new piperic ester, piperlongumester A (45); and two new natural compounds, methyl (2E,4Z)-5-(1,3-benzodioxol-5-yl)penta-2,4-dienoate (46) and trans-piperolein B ester (47), along with 41 known compounds were isolated from the fruits of Piper longum L. Their structures were identified by analyzing spectroscopic data, including mass spectrometry, 1D, and 2D NMR data. The anti-inflammatory and cytotoxic activities of all isolated compounds (1-47) were evaluated. Compounds 3, 6, and 19 inhibited nitric oxide production with IC50 values of 16.1 ± 0.94, 14.5 ± 0.57, and 27.3 ± 1.11 μM, respectively, whereas compound 1 exhibited strong cytotoxic activity toward three ovarian cancer cell lines A2780, TOV-112D, and SK-OV3, with IC50 values of 6.7 ± 0.77, 5.8 ± 0.29, and 48.3 ± 0.40 μM, respectively. Molecular docking simulations were performed to identify the interaction and binding mechanisms of these active metabolites with proteins related to inflammation and cancer.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Dinh Thi Nguyet Anh
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Ha Yeong Chae
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Republic of Korea
| | - Mi Jeong Kwon
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Jeong Ah Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
2
|
Aursnes M, Primdahl KG, Kaupang Å, Park JD, Seyedsayamdost MR, Nolsøe JMJ. On the Structure of Thailandene A: Synthetic Examination of the Cryptic Natural Product Aided by a Theoretical Approach. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractPhenotype-guided transposon mutagenesis has emerged as a valuable tool to access cryptic metabolites encoded in bacterial genomes. Recently, the method was demonstrated by inducing silent biosynthetic gene clusters in Burkholderia thailandensis. Amongst the isolated metabolic products, thailandene A exhibited promising antibiotic activity. By assignment, the linear polyenic aldehyde contained a labile motif, where an ostensible chiral secondary alcohol was interlaced in an allylic and a homoallylic constellation. Our attention was drawn to the pseudo-symmetric relationship between the heterofunctionalities, indicating the transformation of a dodecapentaenedial scaffold. Centering on an iterative cross-coupling protocol, the assigned all-E-(12R)-hydroxydodecapentaenal moiety was assembled by combining Zincke chemistry with the MIDA-attenuated Suzuki reaction developed in the Burke laboratory. Thus, according to the devised strategy, the mixed 1,2-bisborylated vinyl linchpin was consecutively functionalized with 5-bromodienal derivatives in a doubly orthogonal fashion. However, when the synthetic material was matched against the bacterial isolate, inconsistencies were observed. A re-examination of the cryptic natural product was conducted by juxtaposing analytical data from experiment and density functional theory calculations, in which hydroperoxide was evaluated as a candidate metabolite present in the bacterial isolate.
Collapse
Affiliation(s)
- Marius Aursnes
- Department of Pharmaceutical Chemistry, University of Oslo
| | | | - Åsmund Kaupang
- Department of Pharmaceutical Chemistry, University of Oslo
| | | | | | - Jens M. J. Nolsøe
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences
| |
Collapse
|
3
|
Weiss R, Golisano T, Pale P, Mamane V. Insight into the Modes of Activation of Pyridinium and Bipyridinium Salts in Non‐Covalent Organocatalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Robin Weiss
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Tamara Golisano
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|