1
|
Liu XL, Mu QQ, Xu L, Cai X, Li CJ, Zheng ZB, Zhang HH, Wang AD, Xu LW. Cobalt-Catalyzed Highly α-Stereoselective Glycosylation of Glycals. Org Lett 2024; 26:10248-10252. [PMID: 39576136 DOI: 10.1021/acs.orglett.4c03637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Following the satisfactory catalytic performance of cobalt in the C-glycosylation of glycals, further study of cobalt's application values was performed under mild conditions, leading to a range of highly α-stereoselective 2,3-unsaturated O-, S-, and N-glycosides. The synthetic potential of the developed protocol was underscored by the late-stage functionalization of pharmaceutically relevant molecules including the canagliflozin derivative (a potential candidate for treating type 2 diabetes and alleviating pathological aging). Furthermore, control experiments were conducted to elucidate a reasonable mechanism and rule out the pathway involving the configuration conversion between α- and β-anomers.
Collapse
Affiliation(s)
- Xing-Le Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Qiu-Qi Mu
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui 245041, P. R. China
| | - Li Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, P. R. China
| | - Xin Cai
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Chang-Jiang Li
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui 245041, P. R. China
| | - Zu-Biao Zheng
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui 245041, P. R. China
| | - Hui-Hui Zhang
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui 245041, P. R. China
| | - Ai-Dong Wang
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, Anhui 245041, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
2
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Maikhuri VK, Maity J, Srivastava S, Prasad AK. Transition metal-catalyzed double C vinyl-H bond activation: synthesis of conjugated dienes. Org Biomol Chem 2022; 20:9522-9588. [PMID: 36412483 DOI: 10.1039/d2ob01646j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Conjugated dienes have occupied a pivotal position in the field of synthetic organic chemistry and medicinal chemistry. They act as important synthons for the synthesis of various biologically important molecules and therefore, gain tremendous attention worldwide. A wide range of synthetic routes to access these versatile molecules have been developed in the past decades. Transition metal-catalyzed cross-dehydrogenative coupling (CDC) has emerged as one of the utmost front-line research areas in current synthetic organic chemistry due to its high atom economy, efficiency, and viability. In this review, an up-to-date summary including scope, limitations, mechanistic studies, stereoselectivities, and synthetic applications of transition metal-catalyzed double Cvinyl-H bond activation for the synthesis of conjugated dienes has been reported since 2013. The literature reports mentioned in this review have been classified into three different categories, i.e. (a) Cvinyl-Cvinyl bond formation via oxidative homo-coupling of terminal alkenes; (b) Cvinyl-Cvinyl bond formation via non-directed oxidative cross-coupling of linear/cyclic alkenes and terminal/internal alkenes, and (c) Cvinyl-Cvinyl bond formation via oxidative cross-coupling of directing group bearing alkenes and terminal/internal alkenes. Overall, this review aims to provide a concise overview of the current status of the considerable development in this field and is expected to stimulate further innovation and research in the future.
Collapse
Affiliation(s)
- Vipin K Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen's College, University of Delhi, Delhi-110007, India
| | - Smriti Srivastava
- Department of Chemistry, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
4
|
Lu Z, Li Y, Xiang S, Zuo M, Sun Y, Jiang X, Jiao R, Wang Y, Fu Y. Acid Catalyzed Stereocontrolled Ferrier-Type Glycosylation Assisted by Perfluorinated Solvent. Molecules 2022; 27:7234. [PMID: 36364059 PMCID: PMC9656285 DOI: 10.3390/molecules27217234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Described herein is the first application of perfluorinated solvent in the stereoselective formation of O-/S-glycosidic linkages that occurs via a Ferrier rearrangement of acetylated glycals. In this system, the weak interactions between perfluoro-n-hexane and substrates could augment the reactivity and stereocontrol. The initiation of transformation requires only an extremely low loading of resin-H+ and the mild conditions enable the accommodation of a broad spectrum of glycal donors and acceptors. The 'green' feature of this chemistry is demonstrated by low toxicity and easy recovery of the medium, as well as operational simplicity in product isolation.
Collapse
Affiliation(s)
- Zhiqiang Lu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yanzhi Li
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Shaohua Xiang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengke Zuo
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Yangxing Sun
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xingxing Jiang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Rongkai Jiao
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Yinghong Wang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Yuqin Fu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
5
|
Morelli L, Compostella F, Panza L, Imperio D. Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis. Carbohydr Res 2022; 519:108625. [DOI: 10.1016/j.carres.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
6
|
Gurung PB, Thapa P, Hettiarachchi IL, Zhu J. Cationic gold(I)-catalyzed glycosylation with glycosyl N-1,1-dimethylpropargyl carbamate donors. Org Biomol Chem 2022; 20:7006-7010. [PMID: 36000552 DOI: 10.1039/d2ob01436j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A mild and efficient cationic gold(I)-catalyzed O-glycosylation methodology involving the use of bench-stable glycosyl N-1,1-dimethylpropargyl carbamate donors has been developed. In the presence of 1-2 mol% [tris(2,4-di-tert-butylphenyl)phosphite]gold(I) chloride and 5 mol% silver triflate, both "armed" and "disarmed" glycosyl N-1,1-dimethylpropargyl carbamate donors react with various sugar acceptors at room temperature to afford the corresponding glycosides in good to excellent yields. These glycosyl N-1,1-dimethylpropargyl carbamates are found to be orthogonal to regular phenyl thioglycoside donors. The utilization of this method has been demonstrated in the synthesis of a trisaccharide.
Collapse
Affiliation(s)
- Prem Bahadur Gurung
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA.
| | - Prakash Thapa
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA.
| | - Ishani Lakshika Hettiarachchi
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA.
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA.
| |
Collapse
|
7
|
Thapa P, Gurung PB, Hettiarachchi IL, Zhu J. Cationic gold(I)-catalyzed glycosylation with glycosyl S-3-butynyl thiocarbonate donors. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2076863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Prakash Thapa
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH, USA
| | - Prem Bahadur Gurung
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH, USA
| | - Ishani Lakshika Hettiarachchi
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH, USA
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH, USA
| |
Collapse
|
8
|
Kasdekar N, Walke G, Deshpande K, Hotha S. Glycosyl Vinylogous Carbonates as Glycosyl Donors by Metal-Free Activation. J Org Chem 2022; 87:5472-5484. [PMID: 35414184 DOI: 10.1021/acs.joc.1c02427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthesis of glycoconjugates employs a glycosylation reaction wherein an electrophile and a nucleophile known as a glycosyl donor and an aglycon, respectively, are involved. Glycosyl donors often contain a leaving group at the anomeric carbon that upon reaction with activator(s) results in a highly reactive electrophilic species reported as an oxycarbenium ion contact pair that will then be attacked by the aglycon. Therefore, identification of the correct glycosyl donor and activation protocol is essential for the synthesis of all glycoconjugates. Recently identified [Au]/[Ag]-catalyzed activation of ethynylcyclohexyl glycosyl carbonates is one such versatile method for the synthesis of glycosides, oligosaccharides, and glycoconjugates. In this work, stable glycosyl vinylogous carbonates were identified to undergo glycosidation in the presence of a sub-stoichiometric quantity of TfOH. The reaction is fast and suitable for donors containing both C2-ethers and C2-esters. Donors positioned with C2-ethers resulted in anomeric mixtures with greater selectivity toward 1,2-cis glycosides, whereas those with C2-esters gave 1,2-trans selective glycosides. The versatility of the method is demonstrated by conducting the glycosylation with more than 25 substrates. Furthermore, the utility of the glycosyl vinylogous carbonate donors is demonstrated with the successful synthesis of the branched pentaarabinofuranoside moiety of the Mycobacterium tuberculosis cell wall.
Collapse
Affiliation(s)
- Niteshlal Kasdekar
- Department of Chemistry, Indian Institute of Science Education and Research Pune 411 008, India
| | - Gulab Walke
- Department of Chemistry, Indian Institute of Science Education and Research Pune 411 008, India
| | - Kshitij Deshpande
- Department of Chemistry, Indian Institute of Science Education and Research Pune 411 008, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research Pune 411 008, India
| |
Collapse
|
9
|
Escopy S, Demchenko AV. Transition-Metal-Mediated Glycosylation with Thioglycosides. Chemistry 2021; 28:e202103747. [PMID: 34935219 DOI: 10.1002/chem.202103747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 11/09/2022]
Abstract
Thioglycosides are among the most common glycosyl donors that find broad application in the synthesis of glycans and glycoconjugates. However, the requirement for toxic and/or large access of activators needed for common glycosylations with thioglycosides remains a notable drawback. Due to the increased awareness of the chemical waste impact on the environment, synthetic studies have been driven by the goal of finding non-toxic reagents. The main focus of this review is to highlight recent methods for thioglycoside activation that rely on transition metal catalysis.
Collapse
Affiliation(s)
- Samira Escopy
- University of Missouri - St. Louis, Chemistry, UNITED STATES
| | - Alexei V Demchenko
- Saint Louis University, Chemistry, 3501 Laclede Ave, 63103, St. Louis, UNITED STATES
| |
Collapse
|
10
|
Basu N, Ghosh R. Recent chemical syntheses of bacteria related oligosaccharides using modern expeditious approaches. Carbohydr Res 2021; 507:108295. [PMID: 34271477 DOI: 10.1016/j.carres.2021.108295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Apart from some essential and crucial roles in life processes carbohydrates also are involved in a few detrimental courses of action related to human health, like infections by pathogenic microbes, cancer metastasis, transplanted tissue rejection, etc. Regarding management of pathogenesis by microbes, keeping in mind of multi drug-resistant bacteria and epidemic or endemic incidents, preventive measure by vaccination is the best pathway as also recommended by the WHO; by vaccination, eradication of bacterial diseases is also possible. Although some valid vaccines based on attenuated bacterial cells or isolated pure polysaccharide-antigens or the corresponding conjugates thereof are available in the market for prevention of several bacterial diseases, but these are not devoid of some disadvantages also. In order to develop improved conjugate T-cell dependent vaccines oligosaccharides related to bacterial antigens are synthesized and converted to the corresponding carrier protein conjugates. Marketed Cuban Quimi-Hib is such a vaccine being used since 2004 to resist Haemophilus influenza b infections. During nearly the past two decades research is going on worldwide for improved synthesis of bacteria related oligosaccharides or polysaccharides towards development of such semisynthetic or synthetic glycoconjugate vaccines. The present dissertation is an endeavour to encompass the recent syntheses of several pathogenic bacterial oligosaccharides or polysaccharides, made during the past ten-eleven years with special reference to modern expeditious syntheses.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, Hoogly, West Bengal, 712246, India
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
11
|
Imperio D, Campo F, Panza L. Exploring glycosyl sulphates as donors for chemical glycosylation. Org Biomol Chem 2021; 19:4930-4936. [PMID: 33982734 DOI: 10.1039/d1ob00603g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The preparation of anomeric tetrabutylammonium sulphates of glucose and galactose derivatives is reported and their role as donors in glycosylation reactions is studied. Metal triflates showed good performance in activating sulphate as a leaving group. Among them, ytterbium triflate in stoichiometric amounts gave the best results. Basic conditions using barium oxide in combination with trimethylsilyl trifluoromethanesulfonate (TMSOTf) were also shown to give good results. Benzylated sulphates were much more reactive than benzoylated donors when activated either by ytterbium triflate or by BaO and TMSOTf. Different acceptors were tested, such as isopropanol, cholesterol, and other common sugar derivatives. High reaction rates and excellent glycosylation yields were obtained under mild reaction conditions. The α/β anomeric ratio suggests a predominant SN2-like reaction mechanism.
Collapse
Affiliation(s)
- Daniela Imperio
- Università del Piemonte Orientale, Dipartimento di Scienze del Farmaco, L.go Donegani 2, 28100 Novara, Italy.
| | - Federica Campo
- Università del Piemonte Orientale, Dipartimento di Scienze del Farmaco, L.go Donegani 2, 28100 Novara, Italy.
| | - Luigi Panza
- Università del Piemonte Orientale, Dipartimento di Scienze del Farmaco, L.go Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
12
|
Talasila DS, Bauer EB. Ferrocenium complex aided O-glycosylation of glycosyl halides. RSC Adv 2021; 11:36814-36820. [PMID: 35494397 PMCID: PMC9043573 DOI: 10.1039/d1ra05788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/06/2021] [Indexed: 11/21/2022] Open
Abstract
A new strategy for the activation of glycosyl halide donors to be utilized in glycosylation reactions is presented, utilizing the ferrocenium (Fc) complexes [FcB(OH)2]SbF6 and FcBF4 as promoters. The scope of the new system has been investigated using glycosyl chloride and glycosyl fluoride donors in combination with common glycosyl acceptors, such as protected glucose. The corresponding glycosylation products were formed in 95 to 10% isolated yields with α/β ratios ranging from 1/1 to β only (2 to 14 h reaction time at room temperature, 40 to 100% ferrocenium promoter load). Ferrocenium complexes as a new, tunable platform for O-glycosylation reactions are introduced.![]()
Collapse
Affiliation(s)
- Deva Saroja Talasila
- University of Missouri – St. Louis, Department of Chemistry and Biochemistry, One University Boulevard, St. Louis, MO 63121, USA
| | - Eike B. Bauer
- University of Missouri – St. Louis, Department of Chemistry and Biochemistry, One University Boulevard, St. Louis, MO 63121, USA
| |
Collapse
|
13
|
Bizzarri BM, Fanelli A, Kapralov M, Krasavin E, Saladino R. Meteorite-catalyzed intermolecular trans-glycosylation produces nucleosides under proton beam irradiation. RSC Adv 2021; 11:19258-19264. [PMID: 35478633 PMCID: PMC9033569 DOI: 10.1039/d1ra02379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
Di-glycosylated adenines act as glycosyl donors in the intermolecular trans-glycosylation of pyrimidine nucleobases under proton beam irradiation conditions. Formamide and chondrite meteorite NWA 1465 increased the yield and the selectivity of the reaction. The glycosyl transfer process was highly regioselective in yielding canonical N1-pyrimidine nucleosides, the natural β-anomers prevailing in the presence of formamide and NWA 1465. These data highlight the possible role of intermolecular trans-glycosylation in the prebiotic formation of purine and pyrimidine nucleosides, avoiding the occurrence of independent synthetic pathways. Di-glycosylated adenines act as glycosyl donors in the intermolecular trans-glycosylation of pyrimidine nucleobases under proton beam irradiation conditions.![]()
Collapse
Affiliation(s)
| | - Angelica Fanelli
- Ecological and Biological Sciences Department (DEB)
- University of Tuscia
- Viterbo
- Italy
| | - Michail Kapralov
- Joint Institute for Nuclear Research
- JINR's Laboratory of Radiation Biology
- Russia
- Dubna State University
- Ulitsa Universitetskaya
| | - Eugene Krasavin
- Joint Institute for Nuclear Research
- JINR's Laboratory of Radiation Biology
- Russia
- Dubna State University
- Ulitsa Universitetskaya
| | - Raffaele Saladino
- Ecological and Biological Sciences Department (DEB)
- University of Tuscia
- Viterbo
- Italy
| |
Collapse
|