1
|
Wang K, Li J, Zhang H, Chen Y, Li M, Xu J, Liao B, Yi W. DMSO-promoted direct δ-selective arylation of p-quinone methenylpiperidine bearinides to generate fuchsones under metal-free conditions by employing p-QMs themselves or substituted phenols as aryl sources. Org Biomol Chem 2023; 21:7151-7157. [PMID: 37609782 DOI: 10.1039/d3ob01018j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Fuchsones have wide applications in modern society. Present methods for generating fuchsones have many disadvantages and there are significant limitations for further exploration of fuchsone applications. Herein, we describe a DMSO-promoted direct δ-selective arylation of p-QMs to synthesize symmetrical and unsymmetrical fuchsones under metal-free conditions by employing p-QMs themselves or substituted phenols as aryl sources. As unprecedented methods, these novel strategies present a great advantage and significance for further exploration of fuchsones and the development of new applications.
Collapse
Affiliation(s)
- Kunpeng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Jingping Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Haoxiang Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Yan Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Mengfan Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Junju Xu
- College of Tabacco Science, Yunnan Agricultural University, Kunming 650201, P. R. China.
- Key Laboratory of Sustainable Utilization of Plateau characteristic spice plant resources, Education Department of Yunnan Province 650201, P. R. China
| | - Benren Liao
- Shanghai No. 4 Reagent Chemical Co., Ltd, Shanghai 201512, P. R. China.
| | - Weiyin Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| |
Collapse
|
2
|
Charpe VP, Ragupathi A, Sagadevan A, Ho YS, Cheng MJ, Hwang KC. Copper (I) Chloride-Catalyzed Photoredox Synthesis of Multifunctionalized Compounds at Room Temperature and Their Antifungal Activities. Chemistry 2023; 29:e202300110. [PMID: 36892141 DOI: 10.1002/chem.202300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/10/2023]
Abstract
A simple visible-light-induced CuCl-catalyzed synthesis was developed for highly functionalized carbon-centered compounds (α-alk/aryloxy-α-diaryl/alkylaryl-acetaldehydes/ketones) at room temperature using benzoquinone, alkyl/aryl alcohol, and alkyl/aryl terminal/internal alkynes. Late-stage functionalized compounds show good antifungal activities, especially against Candida krusei fungal strain, in in vitro experiments (the Broth microdilution method). Moreover, toxicity tests (zebrafish egg model experiments) indicated that these compounds had negligible cytotoxicity. The green chemistry metrics (E-factor value is 7.3) and eco-scale (eco-scale value is 58.8) evaluations show that the method is simple, mild, highly efficient, eco-friendly, and environmentally feasible.
Collapse
Affiliation(s)
| | - Ayyakkannu Ragupathi
- Department of Chemistry, National Tsing Hua University, Hsinchu, R. O. C., Taiwan
| | | | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, Tainan, R.O.C., Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan, R.O.C., Taiwan
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, R. O. C., Taiwan
| |
Collapse
|
3
|
Adris D, Taskesenligil Y, Akyildiz V, Essiz S, Saracoglu N. Solvent-Mediated Tunable Regiodivergent C6- and N1-Alkylations of 2,3-Disubstituted Indoles with p-Quinone Methides. J Org Chem 2023; 88:3132-3147. [PMID: 36779866 PMCID: PMC9990074 DOI: 10.1021/acs.joc.2c02937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Indium-catalyzed, solvent-enabled regioselective C6- or N1-alkylations of 2,3-disubstituted indoles with para-quinone methides are developed under mild conditions. Notably, highly selective and switchable alkylations were selectively achieved by adjusting the reaction conditions. Moreover, scalability and further transformations of the alkylation products are demonstrated, and this operationally simple methodology is amenable to the late-stage C6-functionalization of the indomethacin drug. The reaction pathways were explained with the support of experimental and density functional theory studies.
Collapse
Affiliation(s)
- Douaa Adris
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Yunus Taskesenligil
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Volkan Akyildiz
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Selcuk Essiz
- Department of Medical Services and Techniques, Vocational School of Health Services, Hakkari University, Hakkari 30000, Türkiye
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| |
Collapse
|
4
|
Li J, Wang K, Wu J, Zhang H, Chen Y, Liu Q, Xu J, Yi W. Elemental Sulfur‐Promoted Synthesis of 4‐Hydroxybenzophenones from
p
‐Quinone Methides under Metal‐Free Condition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingping Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Kunpeng Wang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Jiayi Wu
- Shanghai Ganquan Foreign Languages Middle School 200065 Shanghai P. R. China
| | - Haoxiang Zhang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Yan Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Qinglei Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Junju Xu
- College of Tabacco Science Yunnan Agricultural University Key Laboratory of Sustainable Utilization of Plateau Characteristic Spice Plant Resources Education Department of Yunnan Province 650201 Kunming P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| |
Collapse
|
5
|
Burra AG, Uredi D, Motati DR, Fronczek FR, Watkins EB. Remote Functionalization of 8‐Substituted Quinolines with para‐Quinone Methides: Access to Unsymmetrical Tri(hetero)arylmethanes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | - E. Blake Watkins
- Union University Pharmaceutical Sciences 1050 Union University Drive 38305 Jackson UNITED STATES
| |
Collapse
|
6
|
Xiong B, Si L, Liu Y, Xu W, Jiang T, Cao F, Tang KW, Wong WY. Metal-free, Phosphoric Acid-catalyzed Regioselective 1,6-Hydroarylation of para-Quinone Methides with Indoles in Water. Chem Asian J 2022; 17:e202200042. [PMID: 35246930 DOI: 10.1002/asia.202200042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/19/2022] [Indexed: 11/08/2022]
Abstract
An efficient, cheap and green protocol for the highly regioselective 1,6-hydroarylation of para -quinone methides ( p -QMs) with indoles at the C-3 position has been established by phosphoric acid catalysis in water under the transition-metal-free reaction conditions. A wide range of indole derivatives and para -quinone methides ( p -QMs) are compatible for the reaction, affording the corresponding 1,6-hydroarylation products with good to excellent yields. The possible mechanism of the reaction has been explored by step-by-step control experiments. The protocol is convenient for practical application, leading a safe, green and feasible way for the formation of C-3 diarylmethyl functionalized indole derivatives.
Collapse
Affiliation(s)
- Biquan Xiong
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Lulu Si
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Yu Liu
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Weifeng Xu
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Tao Jiang
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Fan Cao
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Ke-Wen Tang
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Wai-Yeung Wong
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, Hung Hom, Hong Kong, HONG KONG
| |
Collapse
|
7
|
Kumar J, Ahmed A, Kumar S, Raheem S, Rizvi MA, Shah BA. Visible light-mediated synthesis of α-alkoxy/hydroxy diarylacetaldehydes from terminal alkynes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light-mediated approach enabling the use of alcohols as nucleophiles in a one-step synthesis of α-alkoxy/hydroxy diarylacetaldehydes is reported.
Collapse
Affiliation(s)
- Jaswant Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Ajaz Ahmed
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Sourav Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| |
Collapse
|
8
|
Liu D, Xu H, Hang Y, Lu H. 1,6-Addition of Nitrogen Nucleophile to para-Quinone Methides Catalyzed by Recyclable Bismuth Complex: Facile Access to N-Heterocyclic Substituted Unsymmetric Triarylmethane Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Nipate DS, Sonam, Shinde VN, Rangan K, Kumar A. TEMPO-Mediated Synthesis of Indolyl/Imidazo[1,2- a]pyridinyl-Substituted para-Quinone Methides from Butylated Hydroxytoluene. J Org Chem 2021; 86:17090-17100. [PMID: 34762443 DOI: 10.1021/acs.joc.1c02202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of indolyl or imidazo[1,2-a]pyridinyl-substituted para-quinone methides (p-QMs) is prepared by a metal-free, TEMPO-mediated cross-dehydrogenative coupling of butylated hydroxytoluene (BHT) with indoles or imidazo[1,2-a]pyridines in good to high yields. Broad substrate scope with respect to indoles and imidazo[1,2-a]pyridines, good functional group tolerance, and acid/base-free conditions are advantageous feature of the developed protocol. The method was amenable for scale-up on the gram scale. Based on control experiments, a reaction mechanism is proposed to describe this transformation.
Collapse
Affiliation(s)
- Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology & Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sonam
- Department of Chemistry, Birla Institute of Technology & Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology & Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology & Science Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
10
|
Ranga PK, Ahmad F, Singh G, Tyagi A, Vijaya Anand R. Recent advances in the organocatalytic applications of cyclopropene- and cyclopropenium-based small molecules. Org Biomol Chem 2021; 19:9541-9564. [PMID: 34704583 DOI: 10.1039/d1ob01549d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of novel small molecule-based catalysts for organic transformations has increased noticeably in the last two decades. A very recent addition to this particular research area is cyclopropene- and cyclopropenium-based catalysts. At one point in time, particularly in the mid-20th century, much attention was focused on the structural aspects and physical properties of cyclopropene-based compounds. However, a paradigm shift was observed in the late 20th century, and the focus shifted to the synthetic utility of these compounds. In fact, a wide range of cyclopropene derivatives have been found serving as valuable synthons for the construction of carbocycles, heterocycles and other useful organic compounds. In the last few years, the catalytic applications of cyclopropene/cyclopropenium-based compounds have been uncovered and many synthetic protocols have been developed using cyclopropene-based compounds as organocatalysts. Therefore, the main objective of this review is to highlight recent developments in the catalytic applications of cyclopropene-based small molecules in different areas of organocatalysis such as phase-transfer catalysis (PTC), Brønsted base catalysis, hydrogen-bond donor catalysis, nucleophilic carbene catalysis, and electrophotocatalysis developed within the past two decades.
Collapse
Affiliation(s)
- Pavit K Ranga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S.A.S Nagar, Manauli (PO), Punjab - 140306, India.
| | - Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S.A.S Nagar, Manauli (PO), Punjab - 140306, India.
| | - Gurdeep Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S.A.S Nagar, Manauli (PO), Punjab - 140306, India.
| | - Akshi Tyagi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S.A.S Nagar, Manauli (PO), Punjab - 140306, India.
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S.A.S Nagar, Manauli (PO), Punjab - 140306, India.
| |
Collapse
|
11
|
Khonde NS, Said MS, Sabane JK, Gajbhiye JM, Kumar P. Metal-free, Tf2NH-catalyzed 1, 6-conjugate addition of imidazopyridine to para-quinone methides: Easy access to C3-functionalized triarylmethane imidazopyridine. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Wu G, Li T, Liu F, Zhao Y, Ma S, Tang S, Xie X, She X. Thiourea catalyzed 1,6-conjugate addition of indoles to para-quinone methides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Lafzi F, Kilic H. Metal‐ and Additive‐Free C3‐Functionalization of Imidazo[1,2‐
a
]pyridines with
para
‐Quinone Methides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ferruh Lafzi
- Department of Chemistry Faculty of Sciences Atatürk University 25240 Erzurum Turkey
| | - Haydar Kilic
- Department of Chemistry Faculty of Sciences Atatürk University 25240 Erzurum Turkey
- Oltu Vocational Training School Atatürk University 25400 Erzurum Turkey
| |
Collapse
|
14
|
Sharma A, Dixit V, Kumar S, Jain N. Visible Light-Mediated In Situ Generation of δ,δ-Disubstituted p-Quinone Methides: Construction of a Sterically Congested Quaternary Stereocenter. Org Lett 2021; 23:3409-3414. [PMID: 33844558 DOI: 10.1021/acs.orglett.1c00862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An unprecedented visible light-assisted and zinc triflate-catalyzed construction of a diaryl-substituted quaternary stereocenter is reported. 2-(4-Hydroxyphenyl)-substituted aldehydes and ketones have been prepared in moderate to high yields via multicomponent reaction of acetylene, benzoquinone (BQ), and indole/aniline/thiol. The reaction is believed to proceed via in situ generation of p-quinone methide through a [2+2] cycloaddition-retroelectrocyclization of BQ and acetylene in blue light followed by a zinc triflate-catalyzed vinylogous Michael addition reaction with nucleophiles.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Vikas Dixit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Sharvan Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| |
Collapse
|
15
|
Ranga PK, Ahmad F, Nager P, Rana PS, Vijaya Anand R. Bis(amino)cyclopropenium Ion as a Hydrogen-Bond Donor Catalyst for 1,6-Conjugate Addition Reactions. J Org Chem 2021; 86:4994-5010. [PMID: 33721500 DOI: 10.1021/acs.joc.0c02940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic application of the bis(amino)cyclopropenium ion has been investigated in conjugate addition reactions. The hydrogen atom, which is attached to the cyclopropene ring of bis(amino)cyclopropenium salts, is moderately acidic and can potentially serve as a hydrogen-bond donor catalyst in some organic transformations. This hypothesis has been successfully realized in the 1,6-conjugate addition reactions of p-quinone methides with various nucleophiles such as indole, 2-naphthol, thiols, phenols, and so forth. The spectroscopic studies (NMR and UV-vis) as well as the deuterium isotope labeling studies clearly revealed that the hydrogen atom (C-H) that is present in the cyclopropene ring of the catalyst is indeed solely responsible for catalyzing these transformations. In addition, these studies also strongly indicate that the C-H hydrogen of the cyclopropene ring activates the carbonyl group of the p-quinone methide through hydrogen bonding.
Collapse
Affiliation(s)
- Pavit Kumar Ranga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli (P.O.), S. A. S. Nagar, Punjab 140306, India
| | - Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli (P.O.), S. A. S. Nagar, Punjab 140306, India
| | - Prashant Nager
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli (P.O.), S. A. S. Nagar, Punjab 140306, India
| | - Prabhat Singh Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli (P.O.), S. A. S. Nagar, Punjab 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli (P.O.), S. A. S. Nagar, Punjab 140306, India
| |
Collapse
|