1
|
Weng W, Xue G, Pan Z. Development of visible-light-activatable photocaged PROTACs. Eur J Med Chem 2024; 265:116062. [PMID: 38128235 DOI: 10.1016/j.ejmech.2023.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Photocaged proteolysis-targeting chimeras (PROTACs), which employ light as a stimulus to control protein degradation, have recently garnered considerable attention as both powerful chemical tools and a promising therapeutic strategy. However, the poor penetration depth of traditionally used ultraviolet light and the deficiency of alternative caging positions have restricted their applications in biological systems. By installing a diverse array of photocaged groups, with excitation wavelengths ranging from 365 nm to 405 nm, onto different positions of cereblon (CRBN) and Von Hippel-Lindau (VHL)-recruiting Brd4 degraders, we conducted the first comprehensive study on visible-light-activatable photocaged PROTACs to the best of our knowledge. We found the A2, A4 and B3 positions to be most effective at regulating the activity of the degraders, and to provide the resulting molecules (9-12 and 17) as potent visible-light-controlled degraders in live cells.
Collapse
Affiliation(s)
- Weizhi Weng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Gang Xue
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Tian H, You S, Xiong T, Ji M, Zhang K, Jiang L, Du T, Li Y, Liu W, Lin S, Chen X, Xu H. Discovery of a Novel Photocaged PI3K Inhibitor Capable of Real-Time Reporting of Drug Release. ACS Med Chem Lett 2023; 14:1100-1107. [PMID: 37583818 PMCID: PMC10424311 DOI: 10.1021/acsmedchemlett.3c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023] Open
Abstract
A novel photocaged PI3K inhibitor 2 was designed and synthesized by introducing a cascade photocaging group to block its key interaction with the kinase. Upon UV light irradiation, the photocaged compound released a highly potent PI3K inhibitor to recover its anticancer properties and a fluorescent dye for real-time reporting of drug release, providing a new approach for studying the PI3K signaling transduction pathway as well as developing precisely controlled cancer therapeutics.
Collapse
Affiliation(s)
- Hua Tian
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Shen You
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Tianning Xiong
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Ming Ji
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Kehui Zhang
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Lin Jiang
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Tingting Du
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Ying Li
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Wenqian Liu
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Songwen Lin
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Heng Xu
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Xiong H, Xu Y, Kim B, Rha H, Zhang B, Li M, Yang GF, Kim JS. Photo-controllable biochemistry: Exploiting the photocages in phototherapeutic window. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Zhu C, Kou T, Kadi AA, Li J, Zhang Y. Molecular platforms based on biocompatible photoreactions for photomodulation of biological targets. Org Biomol Chem 2021; 19:9358-9368. [PMID: 34632469 DOI: 10.1039/d1ob01613j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoirradiation provides a convenient and biocompatible approach for spatiotemporal modulation of biological systems with photoresponsive components. The construction of molecular platforms with a photoresponse to be integrated into biomolecules for photomodulation has been of great research interest in optochemical biology. In this review, we summarize typical molecular platforms that are integratable with biomolecules for photomodulation purposes. We categorize these molecular platforms according to their excitation light source, namely ultraviolet (UV), visible (Vis) or near-infrared (NIR) light. The protype chemistry of these molecular platforms is introduced along with an overview of their most recent applications for spatiotemporal regulation of biomolecular function in living cells or mice models. Challenges and the outlook are also presented. We hope this review paper will contribute to further progress in the development of molecular platforms and their biomedical use.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Tianzhang Kou
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Pham TTT, Chitose Y, Tam TTT, Tseng WL, Lin TC, Abe M. Impact of Five-membered Heterocyclic Rings on Photophysical Properties Including Two-photon Absorption Character. CHEM LETT 2021. [DOI: 10.1246/cl.210420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thuy Thi Thu Pham
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Youhei Chitose
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tran Thi Thanh Tam
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Wei-Lun Tseng
- Photonic Materials Research Laboratory, Department of Chemistry, National Central University, Jhong-Li District, Taoyuan City 32001, Taiwan
| | - Tzu-Chau Lin
- Photonic Materials Research Laboratory, Department of Chemistry, National Central University, Jhong-Li District, Taoyuan City 32001, Taiwan
- NCU-Covestro Research Center, National Central University, Jhong-Li District, Taoyuan City 32001, Taiwan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Hiroshima University Research Center for Photo-Drug Delivery Systems, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
6
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Mangubat-Medina AE, Ball ZT. Triggering biological processes: methods and applications of photocaged peptides and proteins. Chem Soc Rev 2021; 50:10403-10421. [PMID: 34320043 DOI: 10.1039/d0cs01434f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There has been a significant push in recent years to deploy fundamental knowledge and methods of photochemistry toward biological ends. Photoreactive groups have enabled chemists to activate biological function using the concept of photocaging. By granting spatiotemporal control over protein activation, these photocaging methods are fundamental in understanding biological processes. Peptides and proteins are an important group of photocaging targets that present conceptual and technical challenges, requiring precise chemoselectivity in complex polyfunctional environments. This review focuses on recent advances in photocaging techniques and methodologies, as well as their use in living systems. Photocaging methods include genetic and chemical approaches that require a deep understanding of structure-function relationships based on subtle changes in primary structure. Successful implementation of these ideas can shed light on important spatiotemporal aspects of living systems.
Collapse
Affiliation(s)
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|