1
|
Ru T, Zhang Y, Wei Q, Zuo S, Jia Z, Chen FE. P(V)-Promoted Rh-Catalyzed Highly Regioselective Hydroformylation of Styrenes under Mild Conditions. Molecules 2024; 29:2039. [PMID: 38731530 PMCID: PMC11085418 DOI: 10.3390/molecules29092039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Hydroformylation of olefins is widely used in the chemical industry due to its versatility and the ability to produce valuable aldehydes with 100% atom economy. Herein, a hybrid phosphate promoter was found to efficiently promote rhodium-catalyzed hydroformylation of styrenes under remarkably mild conditions with high regioselectivities. Preliminary mechanistic studies revealed that the weak coordination between the Rhodium and the P=O double bond of this pentavalent phosphate likely induced exceptional reactivity and high ratios of branched aldehydes to linear products.
Collapse
Affiliation(s)
- Tong Ru
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China;
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Yajiao Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350102, China
| | - Qiuxiang Wei
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350102, China
| | - Sheng Zuo
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Zhenhua Jia
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China;
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; (Y.Z.); (Q.W.)
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350102, China
| |
Collapse
|
2
|
Mondal B, Chen H, Maiti R, Wang H, Cai H, Mou C, Hao L, Chai H, Chi YR. Carbene-Catalyzed Direct O-Functionalization of Ketone: Atroposelective Access to Non- C2-Symmetric Binaphthyls. Org Lett 2023; 25:8252-8257. [PMID: 37955414 DOI: 10.1021/acs.orglett.3c03141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Disclosed here is NHC-catalyzed direct intermolecular trapping of the ketone oxygen atom with the acyl azolium intermediate. The overall reaction is a dynamic kinetic resolution process that converts ketone to the corresponding enol ester with well-controlled axial chirality. Our reaction eventually affords non-C2-symmetric binaphthyl derivatives with important applications, such as in the area of asymmetric catalysis.
Collapse
Affiliation(s)
- Bivas Mondal
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hang Chen
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Rakesh Maiti
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongling Wang
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hui Cai
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Chengli Mou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People's Republic of China
| | - Lin Hao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Huifang Chai
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
3
|
Yu S, Cai Q, Yu T, Li J, Yao C, Li YM. New Binaphthyl-Proline-Based Chiral Ligands Bearing Imidazoline Groups: Design, Synthesis, and Their Application in Enantioselective Conjugate Addition of 4-Hydroxycoumarin and Related Nucleophiles to β,γ-Unsaturated α-Ketoesters. J Org Chem 2023; 88:14928-14944. [PMID: 37874252 DOI: 10.1021/acs.joc.3c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper describes the design and application of new binaphthyl-proline-based chiral ligands bearing imidazoline functional groups. These chiral ligands incorporate the advantages of both the binaphthyl and proline skeletons, they are featured with regulatable electronic and steric properties for the imidazoline functional groups, and form chiral complexes with different metal salts such as cuprous acetate. In the presence of an appropriate amount of a chiral catalyst, enantioselective conjugate addition of 4-hydroxycoumarin or related nucleophiles to different β,γ-unsaturated α-ketoesters proceeded readily, giving the desired products in high yield (up to 99%) and excellent enantiomeric excess (up to 99%).
Collapse
Affiliation(s)
- Shibo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Qihang Cai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Tianxu Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jiahui Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Chao Yao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Xue L, Hou J, Li J, Yu T, Cai Q, Yu S, Yao C, Li YM. Copper(II)-Catalyzed Enantioselective Aza-Friedel-Crafts Reaction of Indoles with Isatin-Derived N-Boc-Ketimines. J Org Chem 2023; 88:14345-14350. [PMID: 37791977 DOI: 10.1021/acs.joc.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The copper(II)-catalyzed enantioselective aza-Friedel-Crafts reaction of indoles with isatin-derived N-Boc-ketimines was developed by using tunable chiral O-N-N tridentate ligands derived from BINOL and proline. In general, the reaction afforded chiral 3-indolyl-3-aminooxindoles under mild conditions in high yields (83-97%) with excellent ee (69-99%).
Collapse
Affiliation(s)
- Leipeng Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jiaqi Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jiahui Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Tianxu Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Qihang Cai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Shibo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Chao Yao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Yu S, Cai Q, Wang C, Hou J, Liang J, Jiao Z, Yao C, Li YM. Enantioselective Friedel-Crafts Alkylation of Indoles with β,γ-Unsaturated α-Ketoesters Catalyzed by New Copper(I) Catalysts. J Org Chem 2023. [PMID: 36791262 DOI: 10.1021/acs.joc.2c02749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
New Cu(I) catalysts are effective in enantioselective Friedel-Crafts alkylation of a variety of indoles with different β,γ-unsaturated α-ketoesters. A control study shows that such a catalyst system is less sensitive to air, and the reactions can be carried out without special cares such as glovebox operation or moisture/oxygen-free conditions. Preliminary computation results suggest that there exists π-π stacking between the substrate and the catalyst, and such an interaction seems to play a role in stabilizing the reaction intermediate and enhancing the stereoselectivity of the reactions. The desired products can be obtained in up to 98% yield at 99% enantiomeric excess. The same high enantioselectivity can be observed when the reaction is carried in a gram scale, indicating a good scalability of the catalyst system in enantioselective Friedel-Crafts alkylation of different indoles with β,γ-unsaturated α-ketoesters.
Collapse
Affiliation(s)
- Shibo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Qihang Cai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Chao Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jiaqi Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jiemian Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Zilin Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Chao Yao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Yu S, Cai Q, Li J, Yu T, Liang J, Jiao Z, Yao C, Li YM. Enantioselective Michael addition of malonates to β,γ-unsaturated α-ketoesters catalysed by Cu(II) complexes bearing binaphthyl-proline hybrid ligands. Org Biomol Chem 2023; 21:1764-1770. [PMID: 36723244 DOI: 10.1039/d2ob02305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
High yields (up to 96%) and high ee (up to 92%) were achieved for chiral copper(II) complex-catalysed enantioselective Michael addition of malonates to β,γ-unsaturated-α-ketoesters. The chiral ligands took advantage of both the binaphthyl and the proline moieties, and substituents with different electronic and steric features could be tolerated. The reactions could be carried out under mild conditions, and a gram scale reaction could be realised without the loss of yield and enantioselectivity.
Collapse
Affiliation(s)
- Shibo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Qihang Cai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Jiahui Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Tianxu Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Jiemian Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Zilin Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Chao Yao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Yao C, Chen Y, Wang C, Sun R, Chang H, Jiang R, Li L, Wang X, Li YM. Binaphthyl-Proline Hybrid Chiral Ligands: Modular Design, Synthesis, and Enantioswitching in Cu(II)-Catalyzed Enantioselective Henry Reactions. J Org Chem 2022. [DOI: 10.1021/acs.joc.2c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Yao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Yaoqi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Chao Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Ruize Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Haotian Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Ruiheng Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Lin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Zhang Z, Zhang J, Gao Q, Zhou Y, Yang M, Cao H, Sun T, Luo G, Cao ZC. Enantioselective alkylative cross-coupling of unactivated aromatic C-O electrophiles. Nat Commun 2022; 13:2953. [PMID: 35618745 PMCID: PMC9135759 DOI: 10.1038/s41467-022-30693-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Nonpolar alkyl moieties, especially methyl group, are frequently used to modify bioactive molecules during lead optimization in medicinal chemistry. Thus transition-metal catalyzed alkylative cross-coupling reactions by using readily available and environmentally benign C–O electrophiles have been established as powerful tools to install alkyl groups, however, the C(sp3)–C(sp2) cross-coupling via asymmetric activation of aromatic C–O bond for the synthesis of alkylated chiral compounds remains elusive. Here, we unlock a C(sp3)–C(sp2) cross-coupling via enantioselective activation of aromatic C–O bond for the efficient synthesis of versatile axially chiral 2-alkyl-2’-hydroxyl-biaryl compounds. By employing a unique chiral N-heterocyclic carbene ligand, this transformation is accomplished via nickel catalysis with good enantiocontrol. Mechanistic studies indicate that bis-ligated nickel complexes might be formed as catalytically active species in the enantioselective alkylative cross-coupling. Moreover, further derivation experiments suggest this developed methodology holds great promise for complex molecule synthesis and asymmetric catalysis. Transition-metal catalyzed alkylative cross-couplings are established, powerful tools for the installation of alkyl groups. Here, the authors unlock a C(sp3)–C(sp2) cross-coupling via the asymmetric activation of the aromatic C–O bond by bis-ligated nickel complexes for the synthesis of alkylated, axially chiral biaryl compounds.
Collapse
Affiliation(s)
- Zishuo Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jintong Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yu Zhou
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Mingyu Yang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Tingting Sun
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Gen Luo
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Zhi-Chao Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
9
|
Szakonyi Z, Raji M, Le TM, Csámpai A, Nagy V, Zupkó I. Stereoselective Synthesis and Applications of Pinane-Based Chiral 1,4-Amino Alcohol Derivatives. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractA new library of pinane-based 1,4-amino alcohols was synthesised and utilised as chiral ligands in enantioselective diethylzinc addition to benzaldehyde. Aldol condensation of (+)-nopinone, derived from (–)-β-pinene, with 2-pyridinecarboxaldehyde gave the key intermediate α,β-unsaturated ketone, which was transformed in diastereoselective reduction, followed by hydrogenation, resulting in 1,4-amino alcohols. On the other hand, epoxidation of the α,β-unsaturated ketone, followed by reduction and then hydrogenation of the pyridine ring, afforded a mixture of 4-amino-2,3-epoxy-1-ols. Stereoselective hydride reduction of the epoxy ketone and subsequent condensation of the resulting products with substituted benzyl bromides provided quaternary ammonium salts, which were subjected to hydride reduction and then hydrogenation, affording 4-amino-2,3-epoxy-1-ol derivatives containing an N-benzylpiperidine moiety. The inhibition of nucleophile-initiated opening of the oxirane ring was interpreted by a systematic series of comparative Hartree–Fock modelling study using the 6-31+G(d,p) basis set. The antiproliferative activities of 4-amino-2,3-epoxy-1-ol derivatives were examined, and structure–activity relationships were studied from the aspects of the stereochemistry of the oxirane ring, saturation, and substituent effects on the piperidine ring system.
Collapse
Affiliation(s)
- Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellence Center
| | - Mounir Raji
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellence Center
| | - Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellence Center
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Science
| | | | - Viktória Nagy
- Institute of Pharmacodynamics and Biopharmacy, Interdisciplinary Excellence Center, University of Szeged
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Interdisciplinary Excellence Center, University of Szeged
| |
Collapse
|
10
|
Tavares NCT, Cacho VRG, Costa DCS, Nunes SCC, Pais AACC, Murtinho D, Silva Serra ME. Deciphering the mechanism behind efficient enantioselective ethylation with thiazolidine‐based amino alcohols. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Dora C. S. Costa
- CQC and Department of Chemistry University of Coimbra Coimbra Portugal
| | | | | | - Dina Murtinho
- CQC and Department of Chemistry University of Coimbra Coimbra Portugal
| | | |
Collapse
|
11
|
Wang Q, Pietropaolo A, Fortino M, Song Z, Bando M, Naga N, Nakano T. Photo racemization of 2,2'-dihydroxy-1,1'-binaphthyl derivatives. Chirality 2021; 34:317-324. [PMID: 34939234 DOI: 10.1002/chir.23400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
Photo racemization of 2,2'-dihydroxy-1,1'-binaphthyl (BINOL) and its monomethyl ether, monobutyl ether, and dimethyl ether was studied by means of circularly dichroism spectra, chiral HPLC, and theoretical calculations of rotation energy barriers. Racemization was fastest for BINOL and about one seventh as fast for the monomethyl and monobutyl ethers while it was too slow to be detected for the dimethyl ether under the present conditions.
Collapse
Affiliation(s)
- Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| | - Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy
| | - Zhiyi Song
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Masayoshi Bando
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Naofumi Naga
- Department of Applied Chemistry, College of Engineering, Shibaura Institute of Technology, Tokyo, Japan
| | - Tamaki Nakano
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Integrated Research Consortium on Chemical Sciences (IRCCS), Institute for Catalysis, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Zhang H, Cormanich RA, Wirth T. Chiral Ligands in Hypervalent Iodine Compounds: Synthesis and Structures of Binaphthyl-Based λ 3 -Iodanes. Chemistry 2021; 28:e202103623. [PMID: 34783401 DOI: 10.1002/chem.202103623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 12/22/2022]
Abstract
Several novel binaphthyl-based chiral hypervalent iodine(III) reagents have been prepared and structurally analysed. Various asymmetric oxidative reactions were applied to evaluate the reactivities and stereoselectivities of those reagents. Moderate to excellent yields were observed; however, very low stereoselectivities were obtained. NMR experiments indicated that these reagents are very easily hydrolysed in either chloroform or DMSO solvents leading to the limited stereoselectivities. It is concluded that the use of chiral ligands is an unsuccessful way to prepare efficient stereoselective iodine(III) reagents.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.,Lanzhou Petrochemical University of Vocational Technology, Lanzhou, 730060, P. R. China
| | - Rodrigo A Cormanich
- Institute of Chemistry, University of Campinas, Campinas, Sao Paulo, 13083-862, Brazil
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| |
Collapse
|
13
|
Yao C, Chen Y, Sun R, Wang C, Huang Y, Li L, Li YM. Binaphthyl-prolinol chiral ligands: design and their application in enantioselective arylation of aromatic aldehydes. Org Biomol Chem 2021; 19:3644-3655. [PMID: 33908558 DOI: 10.1039/d1ob00289a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Binaphthyl-prolinol ligands were designed and applied in enantioselective arylation of aromatic aldehydes and sequential arylation-lactonization of methyl 2-formylbenzoate. Under optimized conditions, the reactions provided the desired diarylmethanols and 3-aryl phthalides in up to 96% yields with up to 99% ee and up to 89% yields with up to 99% ee, respectively. In particular, essentially optically pure 3-aryl phthalides (over 99% ee) were obtained in large quantities through recrystallization.
Collapse
Affiliation(s)
- Chao Yao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Yaoqi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Ruize Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Chao Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Yue Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Lin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China. and CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|