1
|
Yoshida M, Imaji R, Shiomi S. Synthesis of Substituted 1,2-Dihydroisoquinolines by Palladium-Catalyzed Cascade Cyclization-Coupling of Trisubstituted Allenamides with Arylboronic Acids. Molecules 2024; 29:2917. [PMID: 38930982 PMCID: PMC11206658 DOI: 10.3390/molecules29122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
1,2-Dihydroisoquinolines are important compounds due to their biological and medicinal activities, and numerous approaches to their synthesis have been reported. Recently, we reported a facile synthesis of trisubstituted allenamides via N-acetylation followed by DBU-promoted isomerization, where various substituted allenamides were conveniently synthesized from readily available propargylamines with high efficiency. In light of this research background, we focused on the utility of this methodology for the synthesis of substituted 1,2-dihydroisoquinolines. In this study, a palladium-catalyzed cascade cyclization-coupling of trisubstituted allenamides containing a bromoaryl moiety with arylboronic acids is described. When N-acetyl diphenyl-substituted trisubstituted allenamide and phenylboronic acid were treated with 10 mol% of Pd(OAc)2, 20 mol% of P(o-tolyl)3, and 5 equivalents of NaOH in dioxane/H2O (4/1) at 80 °C, the reaction proceeded to afford a substituted 1,2-dihydroisoquinoline. The reaction proceeded via intramolecular cyclization, followed by transmetallation with the arylboronic acid of the resulting allylpalladium intermediate. A variety of highly substituted 1,2-dihydroisoquinolines were concisely obtained using this methodology because the allenamides, as reaction substrates, were prepared from readily available propargylamines in one step.
Collapse
Affiliation(s)
- Masahiro Yoshida
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji, Yamashiro-cho, Tokushima 770-8514, Japan; (R.I.); (S.S.)
| | | | | |
Collapse
|
2
|
Rios EAM, Gomes CMB, Silvério GL, Luz EQ, Ali S, D'Oca CDRM, Albach B, Campos RB, Rampon DS. Silver-catalyzed direct selanylation of indoles: synthesis and mechanistic insights. RSC Adv 2023; 13:914-925. [PMID: 36686957 PMCID: PMC9811358 DOI: 10.1039/d2ra06813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/17/2022] [Indexed: 01/05/2023] Open
Abstract
Herein we describe the Ag(i)-catalyzed direct selanylation of indoles with diorganoyl diselenides. The reaction gave 3-selanylindoles with high regioselectivity and also allowed direct access to 2-selanylindoles when the C3 position of the indole ring was blocked via a process similar to Plancher rearrangement. Experimental analyses and density functional theory calculations were carried out in order to picture the reaction mechanism. Among the pathways considered (via concerted metalation-deprotonation, Ag(iii), radical, and electrophilic aromatic substitution), our findings support a classic electrophilic aromatic substitution via Lewis adducts between Ag(i) and diorganoyl diselenides. The results also afforded new insights into the interactions between Ag(i) and diorganoyl diselenides.
Collapse
Affiliation(s)
- Elise Ane Maluf Rios
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Carla M B Gomes
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Gabriel L Silvério
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Eduardo Q Luz
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Sher Ali
- University of São Paulo, Faculty of Animal Science and Food Engineering Pirassununga SP Brazil
| | - Caroline da Ros Montes D'Oca
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Breidi Albach
- Health Department, Unicesumar - The University Center of Maringá Curitiba PR 81070-190 Brazil
| | - Renan B Campos
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná Rua Deputado Heitor de Alencar Furtado, 5000 81280-340 Curitiba Brazil
| | - Daniel S Rampon
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| |
Collapse
|
3
|
Zhao F, Abdellaoui M, Hagui W, Ballarin-Marion M, Berthet J, Corcé V, Delbaere S, Dossmann H, Espagne A, Forté J, Jullien L, Le Saux T, Mouriès-Mansuy V, Ollivier C, Fensterbank L. Reactant-induced photoactivation of in situ generated organogold intermediates leading to alkynylated indoles via Csp 2-Csp cross-coupling. Nat Commun 2022; 13:2295. [PMID: 35484155 PMCID: PMC9051093 DOI: 10.1038/s41467-022-29982-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Photosensitization of organogold intermediates is an emerging field in catalysis. In this context, an access to 2,3-disubstituted indoles from o-alkynyl aniline and iodoalkyne derivatives via a gold-catalyzed sequence under visible-light irradiation and in the absence of an exogenous photocatalyst was uncovered. A wide scope of the process is observed. Of note, 2-iodo-ynamides can be used as electrophiles in this cross-coupling reaction. The resulting N-alkynyl indoles lend themselves to post-functionalization affording valuable scaffolds, notably benzo[a]carbazoles. Mechanistic studies converge on the fact that a potassium sulfonyl amide generates emissive aggregates in the reaction medium. Static quenching of these aggregates by a vinylgold(I) intermediate yields to an excited state of the latter, which can react with an electrophile via oxidative addition and reductive elimination to forge the key C-C bond. This reactant-induced photoactivation of an organogold intermediate opens rich perspectives in the field of cross-coupling reactions.
Collapse
Affiliation(s)
- Fen Zhao
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Mehdi Abdellaoui
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Wided Hagui
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Maria Ballarin-Marion
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Jérôme Berthet
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, 59000, Lille, France
| | - Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Stéphanie Delbaere
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, 59000, Lille, France
| | - Héloïse Dossmann
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Agathe Espagne
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, Rue Lhomond, 75005, Paris, France
| | - Jérémy Forté
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, Rue Lhomond, 75005, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24, Rue Lhomond, 75005, Paris, France
| | - Virginie Mouriès-Mansuy
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France.
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France.
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
4
|
Wang J, Xie C, Cheng X, Liu Y, Zhang J. Synthesis of 3‐Methyleneisoindolin‐1‐ones and Isoquinolinium Salts via
Exo
and
Endo
Selective Cyclization of 2‐(1‐Alkynyl)benzaldimines. Chemistry 2022; 28:e202103306. [DOI: 10.1002/chem.202103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Jiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry & Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 P. R. China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Congyun Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xiang Cheng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Ye Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry & Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 P. R. China
| | - Jun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
5
|
Paroi B, Sancheti SP, Patil NT. 1,2-Aminofunctionalization Reactions of Pyridino-Alkynes via Carbophilic Activation. CHEM REC 2021; 21:3779-3794. [PMID: 34669247 DOI: 10.1002/tcr.202100145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/02/2021] [Indexed: 12/21/2022]
Abstract
Transition metal-catalyzed 1,2-difunctionalization reactions of alkynes have emerged as a powerful tool to forge carbon-carbon and carbon-heteroatom bonds for the rapid synthesis of polyfunctionalized molecular scaffolds. In this regard, our group has persistently been developing transition metal-mediated 1,2-aminofunctionalization reactions of alkynes through a rationally designed pyridino-alkyne core by utilizing the carbophilic activation strategy. In this account, we present an array of such 1,2-aminofunctionalization reactions which have been successfully executed on this core to afford important polycyclic frameworks such as functionalized quinalizinones, pyridinium oxazole dyads (PODs), N-doped polycyclic aromatic hydrocarbons (PAHs), N-doped spiro-PAHs. Additionally, the synthesis of phosphine ligated gold complexes bearing pyrido-isoquinoline scaffold from the pyridino-alkynes will be discussed briefly.
Collapse
Affiliation(s)
- Bidisha Paroi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Shashank P Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| |
Collapse
|
6
|
Unnava R, Chahal K, Reddy KR. Synthesis of substituted 1,2-dihydroisoquinolines via Ni(ii) and Cu(i)/Ag(i) catalyzed double nucleophilic addition of arylamines to ortho-alkynyl donor-acceptor cyclopropanes (o-ADACs). Org Biomol Chem 2021; 19:6025-6029. [PMID: 34160541 DOI: 10.1039/d1ob00760b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A concise approach for the synthesis of substituted 1,2-dihydroisoquinolines via double nucleophilic addition of primary arylamines to ortho-alkynyl donor-acceptor cyclopropanes (o-ADACs) in the presence of a catalytic Ni(ClO4)2·6H2O and CuI/AgOTf system has been developed. Further applying this protocol, some of the derived malonates were converted into the corresponding monoesters under Krapcho decarboxylation reaction conditions. Thereafter, these esters were transformed into the respective acids and alcohols. In addition, multifunctionalized 4-(2,2,2-trifluoroacetyl) 1,2-dihydroisoquinolines were also obtained with excess TFAA.
Collapse
Affiliation(s)
- Ramanjaneyulu Unnava
- Catalysis and Fine Chemicals Division, CSIR Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500007, India.
| | - Kapil Chahal
- Catalysis and Fine Chemicals Division, CSIR Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, UP, India
| | - Kallu Rajender Reddy
- Catalysis and Fine Chemicals Division, CSIR Indian Institute of Chemical Technology, Tarnaka, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, UP, India
| |
Collapse
|