1
|
Ma Q, Hu Y, Li L, Wang B, Mao G, Liu S, Wang G. A lysosome-located and rhodamine-based fluorescence probe for recognizing hydrogen polysulfide. J Pharm Biomed Anal 2024; 250:116411. [PMID: 39141978 DOI: 10.1016/j.jpba.2024.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Hydrogen polysulfide (H2Sn, n≥2), as a kind of active sulfur species (RSS), has become a hot topic in RSS. It can regulate the biological activity of many proteins through S-sulfhydrylation of cysteine residues (protein Cys-SSH), and has a protective effect on cells. Although there have been some studies on hydrogen polysulfide, its production, degradation pathway and regulation mechanism still need further be researched. In presented study, an original lysosome-localized fluorescent probe for determining H2Sn was developed utilizing rhodamine as the fluorogen. The probe used morpholine as the locating unit of lysosomes and chose 2-fluoro-5-nitrobenzoate as the recognizing group. Before adding H2Sn, the proposed probe displayed a spironolactone structure and emitted very weak fluorescence. After adding H2Sn, a conjugated xanthene was formed and the probe demonstrated green fluorescence. When the H2Sn concentration was varied from 6.0×10-7 mol·L-1 to 10.0×10-5 mol·L-1, the fluorescence intensity of the probe was linearly dependent on the H2Sn concentration. And the detection limit was 1.5×10-7 mol·L-1. The presented probe owned a fast response speed, good selectivity, excellent sensitivity and broad pH work scope. In addition, the probe had been well utilized to sense endogenic and exogenic H2Sn in lysosomes.
Collapse
Affiliation(s)
- Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou 450046, PR China.
| | - Yanan Hu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Linke Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Baiyan Wang
- Key Discipline Laboratory of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Shuangyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Gege Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
2
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
Liu S, Zhao X, Ma Q, Wang G, Hou S, Ma Y, Lian Y. An ICT-FRET-based ratiometric fluorescent probe for hydrogen polysulfide based on a coumarin-naphthalimide derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123041. [PMID: 37354859 DOI: 10.1016/j.saa.2023.123041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Hydrogen polysulfide (H2Sn, n > 1), as one of the important members of reactive sulfur species (RSS), plays a vital part in the processes of both their physiology and pathology. In this work, a ratiometric fluorescent probe for H2Sn had been designed and prepared based on the combination mechanism of intramolecular charge transfer (ICT) and fluorescence resonance energy transfer (FRET). The probe chose a coumarin derivative as the energy donor, a naphthalimide derivative as the energy acceptor and 2-fluoro-5-nitrobenzoate as the H2Sn recognition group. When H2Sn was not present in the system, the ICT process of the naphthalimide acceptor was inhibited and the FRET process from the coumarin donor to the naphthalimide acceptor was turned off. When H2Sn was added, both ICT and FRET occurred due to the nucleophilic substitution-cyclization reactions between the probe and hydrogen polysulfide. In addition, the ratio value of the emission intensities at 550 nm and 473 nm (I550 nm/I473 nm) of this probe had a good linear relationship with H2Sn concentration in the range of 6.0 × 10-7-5.0 × 10-5 mol·L-1, and a detection limit of 1.8 × 10-7 mol·L-1 was obtained. The developed probe had high selectivity and sensitivity, as well as good biocompatibility. Additionally, the probe had been used to successfully image both indigenous and exogenous hydrogen polysulfide in A549 cells using confocal microscope.
Collapse
Affiliation(s)
- Shuangyu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xuan Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qiujuan Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou 450046, China.
| | - Gege Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shuqi Hou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yijie Ma
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yujie Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
4
|
Khan Z, Sekar N. Deep Red to NIR Emitting Xanthene Hybrids: Xanthene‐Hemicyanine Hybrids and Xanthene‐Coumarin Hybrids. ChemistrySelect 2023. [DOI: 10.1002/slct.202203377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zeba Khan
- Department of Dyestuff Technology (Currently named as Department of Specialty Chemicals Technology) Institute of Chemical Technology, Matunga (E) Mumbai Maharashtra India, PIN 400019
| | - Nagaiyan Sekar
- Department of Dyestuff Technology (Currently named as Department of Specialty Chemicals Technology) Institute of Chemical Technology, Matunga (E) Mumbai Maharashtra India, PIN 400019
| |
Collapse
|
5
|
Duan N, Yang S. Research Progress on Multifunctional Fluorescent Probes for Biological Imaging, Food and Environmental Detection. Crit Rev Anal Chem 2022; 54:775-817. [PMID: 35849642 DOI: 10.1080/10408347.2022.2098670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There has been rapid progress in the development of fast, sensitive, cheap and low-cytotoxicity micro-molecule fluorescent probes for application in various fields, including disease diagnosis, food safety and environmental safety. As an analytical tool, dual-function fluorescent probes with dual-emission responses have attracted considerable attention due to their cost-effectiveness and efficiency over single-function sensors. This review primarily describes research progress on multifunctional probes in terms of the reaction type and coordination type, as well as the general design principles of probes. The analytes include reactive oxygen species (ROS), reactive sulfur species (RSS), harmful cations and anions, etc. Multifunctional probes for food, medical and environmental applications are listed for future research. To improve the development of rapid detection methods, trends and strategies in the development of multifunctional fluorescent probes are also discussed.
Collapse
Affiliation(s)
- Ning Duan
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
6
|
Duan Q, He Y, Bi W, Liang T, Liu Z, Li Z. In Vivo Monitoring of Hydrogen Polysulfide via a NIR-Excitable Reversible Fluorescent Probe Based on Upconversion Luminescence Resonance Energy Transfer. Anal Chem 2022; 94:8792-8801. [PMID: 35666155 DOI: 10.1021/acs.analchem.2c01650] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogen polysulfide (H2Sn), derived from hydrogen sulfide (H2S), has attracted increasing attention, which is suggested to be the actual signal molecule instead of H2S in physiological and pathological processes. Reversible detection of H2Sn through a NIR-excitable fluorescence probe is an effective means to understand its functions but is quite challenging. Herein, we reported a NIR-excitable ratiometric nanoprobe for the reversible detection of H2Sn based on luminescence resonance energy transfer principle with upconversion nanoparticles as the energy donor and an organic molecule, SiR1, as the energy acceptor and reversible recognition unit of H2Sn. The as-prepared nanoprobe exhibited high selectivity and fast response for the reversible detection of H2Sn, which can monitor the formation and consumption of endogenous H2Sn in living cells. Because of the reduced autofluorescence by NIR excitation, it was successfully applied for tracking the fluctuation of H2Sn concentration of mice in physiological and pathological processes including inflammation and liver injury.
Collapse
Affiliation(s)
- Qian Duan
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yifan He
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Wenqiang Bi
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Tao Liang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
7
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
8
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
9
|
Yang L, Yang N, Gu P, Wang C, Li B, Zhang Y, Ji L, He G. A novel flavone-based ESIPT ratiometric fluorescent probe for selective sensing and imaging of hydrogen polysulfides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120962. [PMID: 35124456 DOI: 10.1016/j.saa.2022.120962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen polysulfides (H2Sn) as an important member of reactive sulfur species is closely relevant to many physiological functions in redox homeostasis and metabolism. Dual-channel monitor the changes of H2Sn level in vivo is highly desired. Herein we design a simple ratiometric fluorescent probe based on flavone skeleton for highly selective detection of H2Sn. The probe HF-NA-MC bearing 2-fluoro-5-nitrobenzoic acid group inhibited the intramolecular ESIPT process, which show the blue fluorescence of adjacent naphthalene unit. In the presence of H2Sn, the enol form of probe is converted to conjugated keto form, resulted in a 90 nm red-shift of fluorescence emission from 450 nm to 540 nm. The ratiometric intensity (I540/I450) of the probe exhibits a good linear relationship toward H2Sn in the range of 0-120 μM, and the detection limit is estimated to be 0.63 μM. The ratiometric fluorescent probe shows high specificity and anti-interference ability for H2Sn over other related reactive sulfur species. The probe HF-NA-MC shows promising outlook and could be applied to the confocal imaging of H2Sn by dual emission channels in Hela cells.
Collapse
Affiliation(s)
- Linlin Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China.
| | - Nan Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Pengli Gu
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Chuang Wang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Beining Li
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Yihua Zhang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Liguo Ji
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China
| | - Guangjie He
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Jinsui Road No. 601, Xinxiang 453003, Henan Province, PR China.
| |
Collapse
|