1
|
Xu F, Zhang SY, Li YP, Huo JQ, Zeng FW. Transition metal-catalyzed cascade C-H activation/cyclization with alkynes: an update on sulfur-containing directing groups. Chem Commun (Camb) 2025; 61:1729-1747. [PMID: 39714315 DOI: 10.1039/d4cc05807k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In light of the extensive applications of sulfur-containing heterocyclic compounds in drug discovery, agrochemicals, and advanced materials, the construction of complex sulfur-containing molecular scaffolds has flourished in recent years. There is a profound interest in synthetic methods for forming carbon-sulfur bonds. Regarding this, transition metal (TM)-catalyzed C-H bond activation has emerged as a valuable means for the rapid formation of C-S bonds, although it is comparatively less explored than C-N or C-C bonds. The research significance of sulfur-directed C-H activation chemistry lies in maintaining a balance between activating and poisoning the catalyst as well as in the diversity and novelty of its properties. This review centers on sulfur-directed TM-catalyzed cascade C-H activation/cyclization with alkyne and encompasses the literature mainly from 2012 to 2024. The widely acknowledged reactivity and versatility of rhodium, ruthenium, and cobalt catalysts have given rise to various captivating cascade processes. For most reactions illustrated in this review, reactivity and selectivity are attained through the flexible synergistic combination of different metal catalysts and additives. Further advancements will be accompanied with the discovery of innovative sulfur-directing groups, chiral catalysis, and ground-breaking experimental techniques. This article will also inspire researchers to gain a deeper understanding of the mechanism, thus undoubtedly leading to innovations and more discoveries in the future.
Collapse
Affiliation(s)
- Fen Xu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| | - Shi-Yu Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| | - Ya-Peng Li
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| | - Jia-Qi Huo
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| | - Fan-Wang Zeng
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| |
Collapse
|
2
|
Lu C, Song Y, Gao L, Wang Y. Recent advances in the applications of gem-difluoromethylene alkynes. Org Biomol Chem 2024; 22:8700-8713. [PMID: 39415722 DOI: 10.1039/d4ob01499e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
As a special class of alkynes, gem-difluoromethylene alkynes exhibit a variety of fascinating properties due to the presence of the gem-difluoro substitution. This substitution highlights the distinctive fluorine effects in influencing the chemoselectivity of reactions. As a result, chemical scientists have shown great interest and enthusiasm for investigating their reactions. In this review, we briefly summarize recent advances in transition metal-catalysed reactions of gem-difluoromethylene alkynes with multiple reaction pathways. Their mechanistic studies and challenges will be highlighted. The purpose of this review is to provide illustrations of elegant gem-difluoromethylene alkynes and thereby elicit further interest among synthetic chemists in developing innovative transformations of gem-difluoromethylene alkynes.
Collapse
Affiliation(s)
- Chengmei Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, P.R. China.
| | - Yu Song
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, P.R. China.
| | - Liuzhou Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, P.R. China.
| | - Yidong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, P.R. China.
| |
Collapse
|
3
|
Ray S, Gupta N, Singh MS. LiBr-Promoted Reaction of β-Ketodithioesters and Thioamides with Sulfoxonium Ylides to Synthesize Functionalized Thiophenes. Org Lett 2024; 26:9401-9406. [PMID: 39436378 DOI: 10.1021/acs.orglett.4c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
An operationally simple and highly efficient synthesis of functionalized thiophenes has been developed by LiBr promoted heteroannulation of β-ketodithioesters and thioamides with bench-stable sulfoxonium ylides in open air for the first time. This one-pot strategy involves formal Csp3-H bond insertion/intramolecular cyclization cascade, featuring readily accessible starting materials, TM and additive-free condition, broad substrate scope, high functional group compatibility, and scalability. Moreover, the carbonyl, thiomethyl, and amino groups in the resulting thiophene provide a good handle on downstream transformations.
Collapse
Affiliation(s)
- Subhasish Ray
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nimisha Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Gola AK, Kumar N, Pandey SK. I 2-Promoted Chemoselective Annulative Coupling of 2-Aminobenzamides with Sulfoxonium Ylides: Easy Access to Quinazolinones. J Org Chem 2024; 89:12410-12420. [PMID: 39160687 DOI: 10.1021/acs.joc.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A flexible and metal-free synthetic approach for synthesizing 2-benzoyl quinazolinones and 2-aryl quinazolinones via molecular iodine-mediated annulative coupling of sulfoxonium ylides with 2-aminobenzamides has been disclosed. The method demonstrates remarkable chemoselectivity and efficiency, leading to high yields of 2-benzoyl quinazolinones and 2-aryl quinazolinones under optimized conditions. The broad substrate scope, scalability, and practical utility were highlighted through diverse applications, including gram-scale reactions and the synthesis of biologically significant compounds such as tryptanthrin and the chemo/biosensor derivative.
Collapse
Affiliation(s)
- Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Naveen Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
5
|
Kumar N, Pandey SK. Annulative coupling of α-substituted acrylic acids and sulfoxonium ylides: easy access to bioactive γ-butyrolactones. Chem Commun (Camb) 2024; 60:8872-8875. [PMID: 39082106 DOI: 10.1039/d4cc03187c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We present a straightforward, catalyst- and additive-free method for synthesizing keto γ-butyrolactones using readily available β-keto sulfoxonium ylides and acrylic acids. This robust approach demonstrates exceptional compatibility with various functional groups on β-keto sulfoxonium ylides and α-substituted acrylic acids, resulting in good to high yields of the anticipated products. Moreover, the practicality of this approach was validated through large-scale reactions and the successful conversion of some synthesized derivatives into bioactive natural products, including L-factor, muricatacin, and cytosporanone A.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Zuo Y, Zuo P, Liu M, Wang X, Du J, Li X, Zhang P, Xu Z. Recent approaches for the synthesis of heterocycles from amidines via a metal catalyzed C-H functionalization reaction. Org Biomol Chem 2024; 22:5014-5031. [PMID: 38831700 DOI: 10.1039/d4ob00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Transition metal catalyzed C-H bond activation has become one of the most important tools for constructing new chemical bonds. Introducing directing groups to the substrates is the key to a successful reaction, these directing groups can also be further transformed in the reaction. Amidines with their unique structure and reactivity are ideal substrates for transition metal-catalyzed C-H transformations. This review describes the major advances and mechanistic investigations of the C-H activation/annulation tandem reactions of amidines until early 2024, focusing on metal-catalyzed C-H activation of amidines with unsaturated compounds, such as alkynes, ketone, vinylene carbonate, cyclopropanols and their derivatives. Meanwhile this manuscript also explores the reaction of amidines with different carbene precursors, for example diazo compounds, azide, triazoles, pyriodotriazoles, and sulfoxonium ylides as well as their own C-H bond activation/cyclization reactions. A bright outlook is provided at the end of the manuscript.
Collapse
Affiliation(s)
- Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pengfei Zuo
- Kunshan Customs, Kunshan, Jiangsu 215300, People's Republic of China
| | - Meijun Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoling Li
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pinghua Zhang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| |
Collapse
|
7
|
Wu Y, Liu Y, Kong Y, Wu M, Wang D, Shang Y, He X. Modular Assembly of Pyrrolo[3,4- c]isoquinolines through Rh-Catalyzed Cascade C-H Activation/Annulation of O-Methyl Aryloximes with Maleimides. J Org Chem 2024; 89:8447-8457. [PMID: 38832810 DOI: 10.1021/acs.joc.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
An efficient and practical strategy for the construction of pyrrolo[3,4-c]isoquinolines via Rh(III)-catalyzed cascade C-H activation and subsequential annulation process from easily available O-methyl aryloximes and maleimides has been disclosed. This facile protocol does not require any inert atmosphere protection with good efficiency in a low loading of catalyst and exhibits good functional group tolerance and broad substrate scope. Notably, the as-prepared products show potential photophysical properties.
Collapse
Affiliation(s)
- Yinsong Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| |
Collapse
|
8
|
Li X, Yue SH, Tan ZY, Liu SB, Luo DX, Zhou YJ, Liang XW. Catalytic asymmetric carbenoid α-C-H insertion of ether. RSC Adv 2024; 14:15167-15177. [PMID: 38741618 PMCID: PMC11090019 DOI: 10.1039/d4ra02206h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Significant advancements have been made in catalytic asymmetric α-C-H bond functionalization of ethers via carbenoid insertion over the past decade. Effective asymmetric catalytic systems, featuring a range of chiral metal catalysts, have been established for the enantioselective synthesis of diverse ether substrates. This has led to the generation of various enantioenriched, highly functionalized oxygen-containing structural motifs, facilitating their application in the asymmetric synthesis of bioactive natural products.
Collapse
Affiliation(s)
- Xin Li
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - San-Hong Yue
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University Changsha 410013 China
| | - Zi-Yang Tan
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Shu-Bo Liu
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University Changsha 410013 China
| | - De-Xiang Luo
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Ying-Jun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Xiao-Wei Liang
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University Changsha 410013 China
| |
Collapse
|
9
|
Li H, Lu Y, Xu N, Jin X, Chen T, Yu J, Liu J. Rhodium(III)-Catalyzed C-H Cascade Annulation of Arylhydrazines with 2-Diazo-1,3-indandiones for the Synthesis of Tetracyclic Indeno[1,2- b]indoles. J Org Chem 2024. [PMID: 38176055 DOI: 10.1021/acs.joc.3c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
An efficient approach for the preparation of tetracyclic indeno[1,2-b]indoles via Rh(III)-catalyzed C-H cascade annulation between arylhydrazines and diazo indan-1,3-diones has been established. In addition, a series of indeno[1,2-b]indoles were obtained in up to 96% yield with a wide range of substrates and high functional group tolerance. Finally, the diverse transformations of the desired products demonstrate the synthetic utility and utilization of this protocol.
Collapse
Affiliation(s)
- He Li
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ye Lu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ning Xu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xinxin Jin
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Tao Chen
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jiaqi Yu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinglin Liu
- Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
10
|
Zhu M, Zhu M, Wei F, Shao C, Li X, Liu B. Synthesis of Bridged Cycloisoxazoline Scaffolds via Rhodium-Catalyzed Coupling of Nitrones with Cyclic Carbonate. J Org Chem 2023; 88:16330-16339. [PMID: 37966420 DOI: 10.1021/acs.joc.3c01840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bridged isoxazolidines were synthesized via Rh(III)-catalyzed C-H allylation of α-aryl nitrones with 5-methylene-1,3-dioxan-2-one. The nitrone group serves as a directing group and 1,3-dipole in the C-H activation/[3 + 2] cycloaddition cascade, exhibiting excellent chemo- and stereoselectivity along with good functional group compatibility. The resulting skeletal structure was conveniently modified to produce a range of important chemical frameworks, and the protocol was applied to biologically active molecules.
Collapse
Affiliation(s)
- Man Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengdie Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fangjie Wei
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chongjing Shao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xingwei Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
Kumar N, Pandey SK. Metal-free synthesis of α-acyloxy ketones from carboxylic acids and sulfoxonium ylides. Org Biomol Chem 2023; 21:8819-8822. [PMID: 37899657 DOI: 10.1039/d3ob01683h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
A straightforward, catalyst- and additive-free approach has been described for synthesizing α-acyloxy ketones from β-ketosulfoxonium ylides and carboxylic acids. Moderate to high yields of α-acyloxy ketones were produced using sulfoxonium ylides and carboxylic acids adorned with various functional groups. Eventually, the applicability of this approach has been shown via a large-scale reaction and transforming the synthesized α-acyloxy ketone derivatives into other valuable compounds.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
12
|
Wang Y, Qi M, Lu P, Wang Y. Rh(III)-Catalyzed Reaction of 4-Diazoisochroman-3-imines with (2-Formylaryl)boronic Acids To Access a Straightforward Construction of 5 H-Isochromeno[3,4- c]isoquinolines. J Org Chem 2023; 88:13544-13552. [PMID: 37698421 DOI: 10.1021/acs.joc.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
An Rh(III)-catalyzed one-pot synthesis of 5H-isochromeno[3,4-c]isoquinolines from readily available 4-diazoisochroman-3-imines and (2-formylphenyl)boronic acids is reported. The cascade annulation involves a Rh(III)-catalyzed cross-coupling and an intramolecular nucleophilic addition-elimination process. A series of biologically important 5H-isochromeno[3,4-c]isoquinolines were obtained in good to excellent yields. The method can be extended to synthesize 7H-isochromeno[3,4-b]thieno[3,2-d]pyridines and 7H-isochromeno[3,4-b]thieno[2,3-d]pyridines from the corresponding heteroaryl boronic acids.
Collapse
Affiliation(s)
- Yingxiao Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Minghui Qi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
13
|
Peng RJ, Chen Y, Zhang XJ, Yan M. Regioselective ortho C-H insertion of N-nitrosoanilines with naphthoquinone carbenes. Org Biomol Chem 2023; 21:7525-7529. [PMID: 37671734 DOI: 10.1039/d3ob01104f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A Rh(III)-catalyzed ortho C-H migratory insertion of N-nitrosoanilines with naphthoquinone carbenes has been developed. The products were obtained in good yields under mild reaction conditions. Diverse elaborations of the products were explored. This method is valuable for the synthesis of biarylamines and their derivatives.
Collapse
Affiliation(s)
- Rui-Jun Peng
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuan Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Sharma A, Gola AK, Pandey SK. Straightforward access to α-thiocyanoketones and thiazoles from sulfoxonium ylides. Chem Commun (Camb) 2023; 59:10247-10250. [PMID: 37458384 DOI: 10.1039/d3cc02401f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Efficient, versatile, and metal-free strategies for synthesizing α-thiocyanoketones and thiazoles from β-ketosulfoxonium ylides and ammonium thiocyanate have been described. Due to its simplicity, benign reaction conditions, excellent chemoselectivity, and high yield, this method represents a unique approach for divergent synthesis. Finally, the potential value of the developed methods is demonstrated via large-scale reactions and synthesis of Fanetizole, an anti-inflammatory drug.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
15
|
Kumar N, Sharma A, Kumar U, Pandey SK. Multicomponent Reaction of CS 2, Amines, and Sulfoxonium Ylides in Water: Straightforward Access to β-Keto Dithiocarbamates, Thiazolidine-2-thiones, and Thiazole-2-thiones. J Org Chem 2023; 88:6120-6125. [PMID: 37018423 DOI: 10.1021/acs.joc.2c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Simple, versatile, and catalyst-free synthetic methods for β-keto dithiocarbamates, thiazolidine-2-thiones, and thiazole-2-thiones via the multicomponent reaction of CS2, amines, and sulfoxonium ylides have been described. The β-keto sulfoxonium ylides furnished β-keto dithiocarbamates in the presence of CS2 and secondary amines, whereas primary amines afforded thiazolidine-2-thiones or thiazole-2-thiones after dehydration in an acidic environment. With simple procedures, the reaction has a wide substrate scope and excellent functional group tolerance.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Upendra Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
16
|
Wang M, Zhou Q, Zhang X, Fan X. Condition‐Controlled Divergent Synthesis of Imidazoindolone Spiroisoquinolinones from
N
‐Alkoxycarboxamide Indoles and Diazo Homophthalimides. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Manqing Wang
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| | - Qianting Zhou
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| | - Xinying Zhang
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| | - Xuesen Fan
- Pingyuan Laboratory Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007, People's Republic of China
| |
Collapse
|
17
|
Sihag P, Chakraborty T, Jeganmohan M. Rhodium-Catalyzed Allylic C-H Functionalization of Unactivated Alkenes with α-Diazocarbonyl Compounds. Org Lett 2023. [PMID: 36795960 DOI: 10.1021/acs.orglett.2c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A redox-neutral mild methodology for the allylic C-H alkylation of unactivated alkenes with diazo compounds is demonstrated. The developed protocol is able to bypass the possibility of the cyclopropanation of an alkene upon its reaction with the acceptor-acceptor diazo compounds. The protocol is highly accomplished due to its compatibility with various unactivated alkenes functionalized with different sensitive functional groups. A rhodacycle π-allyl intermediate has been synthesized and proved to be the active intermediate. Additional mechanistic investigations aided the elucidation of the plausible reaction mechanism.
Collapse
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Trisha Chakraborty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
18
|
Gola AK, Sharma A, Pandey SK. Synthesis of α-Carbonyl-α'-amide Sulfoxonium Ylides from Isocyanates with Complete Atom Economy. Org Lett 2023; 25:1214-1217. [PMID: 36757361 DOI: 10.1021/acs.orglett.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
An efficient catalyst- and additive-free facile synthesis of α-carbonyl-α'-amide sulfoxonium ylides from isocyanates and β-ketosulfoxonium ylides with complete atom economy has been described. The β-ketosulfoxonium ylides and isocyanates adorned with various functional groups were well-tolerated and afforded moderate to high yields of the α-carbonyl-α'-amide sulfoxonium ylide derivatives. Finally, using large-scale reactions and converting the synthesized ylides into other valuable compounds, we demonstrated the practicality of this synthetic method.
Collapse
Affiliation(s)
- Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
19
|
Sharma A, Pandey SK. Catalyst- and additive-free syntheses of rhodanine and S-alkyl dithiocarbamate derivatives from sulfoxonium ylides. Chem Commun (Camb) 2023; 59:1509-1512. [PMID: 36655910 DOI: 10.1039/d2cc06092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An efficient catalyst- and additive-free facile access to rhodanine and S-alkyl dithiocarbamate derivatives via multi-component reaction of amines, CS2 and α-ester sulfoxonium ylides in methanol has been described. The new synthetic methods offer excellent synthetic prospects for several functionalized rhodanines and S-alkyl dithiocarbamates with simple operational procedures.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
20
|
Singh A, Kumar S, Volla CMR. α-Carbonyl sulfoxonium ylides in transition metal-catalyzed C-H activation: a safe carbene precursor and a weak directing group. Org Biomol Chem 2023; 21:879-909. [PMID: 36562262 DOI: 10.1039/d2ob01835g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal-catalyzed cross-coupling of sp2 C-H bonds with diazo compounds via carbene migratory insertion represents an efficient strategy for the construction of C-C and C-heteroatom bonds in organic synthesis. Despite the popularity of diazo compounds as coupling partners in C-H activation, they pose serious safety and stability issues due to potential exothermic reactions linked with the release of N2 gas. However, compared with diazo compounds, sulfoxonium ylides are generally crystalline solids, more stable, widely used in industrial scales, and easier/safer to prepare. Therefore, recent years have witnessed an upsurge in employing α-carbonyl sulfoxonium ylides as an alternative carbene surrogate in transition metal-catalyzed C-H activation. Unlike diazo compounds, α-carbonyl sulfoxonium ylides contain inherent potential to serve as a coupling partner as well as a weak directing group. This review will summarize the progress made in both categories of reactions.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
21
|
Yuan C, Pan C. Recent Advances in the N-Aryl C—H Functionalization Using 7-Azaindole as Intrinsic Directing Group. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
22
|
Kumar S, Borkar V, Mujahid M, Nunewar S, Kanchupalli V. Iodonium ylides: an emerging and alternative carbene precursor for C-H functionalizations. Org Biomol Chem 2022; 21:24-38. [PMID: 36416081 DOI: 10.1039/d2ob01644c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metal-catalyzed successive activation and functionalization of arene/heteroarene is one of the most fundamental transformations in organic synthesis and leads to privileged scaffolds in natural products, pharmaceuticals, agrochemicals, and fine chemicals. Particularly, transition-metal-catalyzed C-H functionalization of arenes with carbene precursors via metal carbene migratory insertion has been well studied. As a result, diverse carbene precursors have been evaluated, such as diazo compounds, sulfoxonium ylides, triazoles, etc. In addition, there have been significant developments with the use of iodonium ylides as carbene precursors in recent years, and these reactions proceed with high efficiencies and selectivities. This review provides a comprehensive overview of iodonium ylides in C-H functionalizations, including the scope, limitations, and their potential synthetic applications.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Vaishnavi Borkar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Mohd Mujahid
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| |
Collapse
|
23
|
Fang T, Zhang S, Ye Q, Kong S, Yang T, Tang K, He X, Shang Y. Rh-Catalyzed Cascade C-H Activation/Annulation of N-Hydroxybenzamides and Propargylic Acetates for Modular Access to Isoquinolones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238553. [PMID: 36500644 PMCID: PMC9740102 DOI: 10.3390/molecules27238553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
A sequential Rh(III)-catalyzed C-H activation/annulation of N-hydroxybenzamides with propargylic acetates leading to the formation of NH-free isoquinolones is described. This reaction proceeds through a sequential C-H activation/alkyne insertion/intramolecular annulation/N-O bond cleavage procedure, affording a broad spectrum of products with diverse substituents in moderate-to-excellent yields. Notably, this protocol features the simultaneous formation of two new C-C/C-N bonds and one heterocycle in one pot with the release of water as the sole byproduct.
Collapse
Affiliation(s)
- Taibei Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Shiwen Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qingqing Ye
- Department of Medicine, Chuzhou City Vocation College, Chuzhou 239000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| | - Shuwen Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Tingting Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Kaijie Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- Correspondence: (Q.Y.); (X.H.); (Y.S.)
| |
Collapse
|
24
|
Bora D, John SE, Galla MS, Sathish M, Shankaraiah N. Rh(III)-catalysed site-selective alkylation of β-carbolines/isoquinolines and tandem C H/C N functionalization to construct indolizine-indole frameworks. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Zhang Y, Ling S, Li P, Chen Z, Wu XF. Rh(III)-Catalyzed Dual C–H Activation/Cascade Annulation of Benzimidates and CF 3-Imidoyl Sulfoxonium Ylides for the Synthesis of Trifluoromethyl-Decorated Benzo[ de][1,8]naphthyridines. Org Lett 2022; 24:8864-8869. [DOI: 10.1021/acs.orglett.2c03666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Yu Zhang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Sihao Ling
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Pinyi Li
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
26
|
Rh(III)-Catalyzed C-H Activation/Intramolecular Annulation for the Synthesis of N-Methoxydihydropyrimidin-2-one Fused Heterocycles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Moon J, Ko N, Jang S, Ghosh P, Kim HS, Mishra NK, Kim IS. Ruthenium(II)-Catalyzed Tandem C–H Allylation and [3 + 2] Dipolar Cycloaddition to Construct Bridged Tetracycles. Org Lett 2022; 24:8115-8119. [DOI: 10.1021/acs.orglett.2c03085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nayoung Ko
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seoeun Jang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
28
|
Nunewar S, Kumar S, Meshram AW, Kanchupalli V. Ru(II)-Catalyzed C–H Functionalization of 2-Arylbenzimidazoles with Iodonium Ylides: A Straightforward Access to Bridgehead Polycyclic N-Heterocycles. J Org Chem 2022; 87:13757-13762. [DOI: 10.1021/acs.joc.2c01429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Saiprasad Nunewar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Sanjeev Kumar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Akhilesh Waman Meshram
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| | - Vinaykumar Kanchupalli
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India
| |
Collapse
|
29
|
Aher YN, Pawar AB. Free Amine-Directed Ru(II)-Catalyzed Redox-Neutral [4 + 2] C-H Activation/Annulation of Benzylamines with Sulfoxonium Ylides. J Org Chem 2022; 87:12608-12621. [PMID: 36082518 DOI: 10.1021/acs.joc.2c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An external oxidant free Ru(II)-catalyzed C-H functionalization/annulation of primary benzylamines with sulfoxonium ylides has been developed for the synthesis of isoquinolines. The reaction utilizes free amine as a directing group, which is generally considered to be a poor directing group. This work presents the first example of Ru-catalyzed C-H functionalization of benzylamines under redox-neutral conditions. The detection of the amine-directed ruthenacyclic intermediate using high-resolution mass spectrometry corroborated the involvement of free amine as a directing group.
Collapse
Affiliation(s)
- Yogesh N Aher
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Amit B Pawar
- School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
30
|
Peng RJ, Chen L, Zhang XJ, Yan M. Rh(III)‐Catalyzed C‒H Functionalization of <i>N</i>‐Nitrosoanilines with <i>α</i>‐Sulfonylcarbenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
John SE, Bora D, Shankaraiah N. Ru(II)-Catalyzed regioselective carbene insertion into β-carbolines and isoquinolines. Org Biomol Chem 2022; 20:5852-5860. [PMID: 35848450 DOI: 10.1039/d2ob00946c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protocol for carbene insertion into the inert C(sp2)-H bond has been established wherein β-carbolines and isoquinolines are explored as intrinsic directing groups. The Ru(II)-catalyzed strategy employing sulfoxonium ylides as the carbene precursor offers an effective and atom-economical functionalization of substrates of biological interest with only DMSO as the sole by-product. The strategy is scalable to gram scale, and it also showcases a wide range of functional group tolerance. ESI-MS studies assisted in the identification of intermediates and consolidation of a probable mechanistic pathway. Furthermore, investigations revealed that the functionalized molecules not only displayed selective inhibition against cancer cell lines, but also demonstrated promising photophysical properties.
Collapse
Affiliation(s)
- Stephy Elza John
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| | - Darshana Bora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
32
|
Dawood KM, Alaasar M. Transition Metals Catalyzed Heteroannulation Reactions in Aqueous Medium. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kamal M. Dawood
- Cairo University Faculty of Science Chemistry Giza street 12613 Giza EGYPT
| | - Mohamed Alaasar
- Martin Luther University Halle-Wittenberg Faculty I of Natural Science - Biological Science: Martin-Luther-Universitat Halle-Wittenberg Naturwissenschaftliche Fakultat I Biowissenschaften Institute of Chemistry Halle GERMANY
| |
Collapse
|
33
|
Pan C, Yuan C, Yu JT. Ruthenium‐Catalyzed C–H Functionalization/Annulation of N‐Aryl Indazoles/Phthalazines with Sulfoxonium Ylides to access Tetracyclic Fused Cinnolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Changduo Pan
- Jiangsu University of Technology School of Petrochemical Engineering Changzhou 213164 Changzhou CHINA
| | - Cheng Yuan
- Jiangsu University of Technology School of Chemical and Environmental Engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering CHINA
| |
Collapse
|
34
|
Komarova AA, Muratov DV, Perekalin DS. Cyclopentadienyl rhodium(III) complexes as catalysts for the insertion of phenyldiazoacetate into E−H bonds. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Yang W, Zhang H, Liu Y, Tang C, Xu X, Liu J. Rh(iii)-catalyzed synthesis of dibenzo[ b, d]pyran-6-ones from aryl ketone O-acetyl oximes and quinones via C-H activation and C-C bond cleavage. RSC Adv 2022; 12:14435-14438. [PMID: 35702227 PMCID: PMC9096810 DOI: 10.1039/d2ra02074b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
A redox-neutral synthesis of dibenzo[b,d]pyran-6-ones from aryl ketone O-acetyl oximes and quinones has been realized via Rh(iii)-catalyzed cascade C-H activation annulation. A possible Rh(iii)-Rh(v)-Rh(iii) mechanism involving an unprecedented β-C elimination step was proposed.
Collapse
Affiliation(s)
- Wei Yang
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
- Gongqing Institute of Science and Technology Gongqing 332020 China
| | - Haonan Zhang
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| | - Yu Liu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
- Gongqing Institute of Science and Technology Gongqing 332020 China
| | - Cuiman Tang
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| | - Xiaohui Xu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| | - Jiaqi Liu
- School of Chemical Engineering, Northeast Electric Power University Jilin 132012 China
| |
Collapse
|
36
|
Kumar S, Nunewar S, Sabbi TK, Kanchupalli V. Synthesis of Indenone Derivatives by Rh(III)-Catalyzed C-H Functionalization of Sulfoxonium Ylides with 1,3-Diynes. Org Lett 2022; 24:3395-3400. [PMID: 35510866 DOI: 10.1021/acs.orglett.2c01166] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transition-metal-catalyzed C-H functionalization of sulfoxonium ylides with alkynes formally participates in [4 + 2] annulations to deliver the naphthol scaffolds. In contrast, herein we disclose the first Rh(III)-catalyzed C-H activation, followed by redox-neutral [3 + 2] annulation of sulfoxonium ylides with 1,3-diynes, which delivers the alkynated indenone derivatives. This protocol features a good functional group tolerance, a broad substrate scope, moderate to excellent yields, and mild reaction conditions. The reaction mechanism was supported through ESI-HRMS by characterizing key intermediates in the catalytic cycle.
Collapse
Affiliation(s)
- Sanjeev Kumar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Saiprasad Nunewar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Tharun Kumar Sabbi
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Vinaykumar Kanchupalli
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| |
Collapse
|
37
|
Nunewar S, Kumar S, Priyanka P, Girase P, Kanchupalli V. The solvent-controlled Rh(III)-catalyzed switchable [4+2] annulation of 2-arylIndoles with iodonium ylides. Chem Commun (Camb) 2022; 58:6140-6143. [PMID: 35506915 DOI: 10.1039/d2cc01386j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Highly selective and switchable [4+2] annulations of 2-arylindoles with iodonium ylides were achieved by performing solvent-controlled Rh(III)-catalyzed C-H activations. When using DCM as a solvent, the C-H functionalization of 2-arylindoles with iodonium ylides selectively delivered indolo[2,1-a]isoquinoline derivatives. In contrast, the same catalytic system with a polar HFIP solvent predominately provided benzo[a]carbazole moieties.
Collapse
Affiliation(s)
- Saiprasad Nunewar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500 037, Telangana, India.
| | - Sanjeev Kumar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500 037, Telangana, India.
| | - Pendam Priyanka
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500 037, Telangana, India.
| | - Pradeep Girase
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500 037, Telangana, India.
| | - Vinaykumar Kanchupalli
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500 037, Telangana, India.
| |
Collapse
|
38
|
Chen L, Su XC, Peng RJ, Zhang XJ, Yan M. Rh(III)-Catalyzed ortho C-H functionalization of aromatic amides with bis(phenylsulfonyl)diazomethane and α-diazosulfones. Org Biomol Chem 2022; 20:3268-3272. [PMID: 35363234 DOI: 10.1039/d1ob02380b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Rh(III)-catalyzed migratory insertion of bis(phenylsulfonyl) carbene and α-sulfonyl carbenes into ortho C-H bonds of aryl amides has been developed. The products were obtained with moderate to excellent yields under mild reaction conditions. A reaction mechanism was proposed based on the control experiments and previous studies. Diverse desulfonylation transformations of the products were achieved.
Collapse
Affiliation(s)
- Lei Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xiao-Can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rui-Jun Peng
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
39
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
40
|
Long Y, Wang Y, Chen YY, Han WY, Wan NW, Yuan WC, Chen YZ, Cui BD. Copper-Catalyzed [5 + 1] Cyclization of o-Pyrrolo Anilines and Heterocyclic N-Tosylhydrazones for Access to Spiro-dihydropyrrolo[1,2- a]quinoxaline Derivatives. J Org Chem 2022; 87:4112-4123. [PMID: 35258307 DOI: 10.1021/acs.joc.1c02909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An inexpensive copper-catalyzed sequential reaction process, proceeding via a nucleophilic attack of amine to Cu-carbene generated in situ from heterocyclic N-tosylhydrazone precursors followed by a 1,2-H shift/oxidative cyclization cascade of N-ylides, has been described, smoothly generating the corresponding structurally various spiro-dihydropyrrolo[1,2-a]quinoxaline derivatives. Furthermore, the significance of this protocol can be also highlighted by its diverse conversions of the synthetic compounds to the potentially bioactive molecules such as the 2-substituted pyrrolo[1,2-a]quinoxalins.
Collapse
Affiliation(s)
- Yan Long
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yue-You Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
41
|
Zhang P, Zeng J, Pan P, Zhang XJ, Yan M. Palladium-Catalyzed Migratory Insertion of Carbenes and C-C Cleavage of Cycloalkanecarboxamides. Org Lett 2022; 24:536-541. [PMID: 35057629 DOI: 10.1021/acs.orglett.1c03952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium catalyzed reaction of cycloalkanecarboxamides and diazomalonates or bis(phenylsulfonyl)diazomethane has been developed. The reaction proceeds via carbene migratory insertion and cascade C-C cleavage pathways. Cycloalkanecarboxamides with four to seven membered rings are applicable in the transformation. A series of ring opening products were prepared with moderate yields. The finding provides valuable clues for the development of new reactions involving carbene migratory insertion and the cleavage of unstrained C(sp3)-C(sp3) bonds.
Collapse
Affiliation(s)
- Peng Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia Zeng
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ping Pan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
42
|
Pan C, Yuan C, Chen D, Chen Y, Yu JT. Rh(III)‐Catalyzed C–H Activation/Annulation of N‐methyl Arylhydrazines with Iodonium Ylides toward Ring‐fused Cinnolines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changduo Pan
- Jiangsu University of Technology SChoo of chemical and environmental engineering CHINA
| | - Cheng Yuan
- Jiangsu University of Technology School of chemical and environmetal engineering CHINA
| | - Dongdong Chen
- Jiangsu University of Technology School of chemical and envirionmetal enhineering CHINA
| | - Yuecheng Chen
- Jiangsu University of Technology School of chemcial and envionmental engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering Changzhou 213000 Changzhou CHINA
| |
Collapse
|
43
|
Li R, Hou YX, Xu JH, Gao Y, Hu XQ. Divergent synthesis of fused N-heterocycles via rhodium-catalysed [4+2] cyclization of pyrazolidinones with iodonium ylides. Org Chem Front 2022. [DOI: 10.1039/d2qo00144f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic system-controlled divergent strategy is developed for the precise synthesis of cinnolines and pyrazolo[1,2-a]cinnolines via rhodium-catalysed [4+2] cyclization of readily available pyrazolidinones and iodonium ylides. A range of cinnolines...
Collapse
|
44
|
Xie P, Gao H, Li X, Jiang Y, Liu B. Rh( iii)-Catalyzed C–C coupling of unactivated C(sp 3)–H bonds with iodonium ylides for accessing all-carbon quaternary centers. Org Chem Front 2022. [DOI: 10.1039/d2qo00667g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rhodium-catalyzed inert C(sp3)–H activation/carbene insertion has been realized, leading to the construction of all-carbon quaternary centers.
Collapse
Affiliation(s)
- Pengfei Xie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huixing Gao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
45
|
Mingzhou S, Lanlan Z, Miaomiao C, Wangcheng H, Xinwei H, Hongjian L. Synthesis of Esterified/Fused Isocoumarins via Rh-Catalyzed C—H Activation/Transannulative Coupling/Annulation of Phthalic Anhydrides with Cyclic 2-Diazo-1,3-diketones and Methanol. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Li X, li D, zhang X. Ru(II)-Catalyzed C-H Bond Activation/Annulation of N-iminopyridinium Ylides with Sulfoxonium Ylides. Org Biomol Chem 2022; 20:1475-1479. [DOI: 10.1039/d1ob02427b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ru(II)-catalyzed C-H bond activation/annulation of N-iminopyridinium ylides with sulfoxonium ylides has been developed for the synthesis of diverse functionalized isocoumarin derivatives. This method features broad substrate scope, high-functional-group tolerance,...
Collapse
|
47
|
Gao H, Hu L, Hu Y, Lv X, Wu YB, Lu G. How the electron-deficient Cp ligand facilitates Rh-catalyzed annulations with alkynes. Org Chem Front 2022. [DOI: 10.1039/d1qo01566d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The dominant factors for the CpX ligand effects (Cp* versus CpE) on the reactivity for alkyne insertion into cationic and neutral rhodacycles are identified based on energy decomposition analysis.
Collapse
Affiliation(s)
- Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
48
|
Huang J, Liu F, Wu X, Chen JQ, Wu J. Recent advance in the reactions of silacyclobutanes and their applications. Org Chem Front 2022. [DOI: 10.1039/d2qo00410k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silacyclobutanes (SCBs), as a key member of organosilicon family, have received considerable attention in synthetic chemistry since the silicon-carbon bond can be activated. Followed by ring-opening and ring expansion process,...
Collapse
|
49
|
Zhang J, Zhang C, Zheng Z, Zhou P, Liu W. Research Progress of Sulfoxonium Ylides in the Construction of Five/Six-Membered Nitrogen-Containing Heterocycles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Gu H, Jin X, Li J, Li H, Liu J. Recent Progress in Transition Metal-Catalyzed C—H Bond Activation of N-Aryl Phthalazinones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|