1
|
Alfano A, Smyth M, Wharry S, Moody TS, Baumann M. Modular Synthesis of Benzoylpyridines Exploiting a Reductive Arylation Strategy. Org Lett 2024; 26:2847-2851. [PMID: 38133578 PMCID: PMC11020167 DOI: 10.1021/acs.orglett.3c03833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Herein we disclose a telescoped flow strategy to access electronically differentiated bisaryl ketones as potentially new and tunable photosensitizers containing both electron-rich benzene systems and electron-deficient pyridyl moieties. Our approach merges a light-driven (365 nm) and catalyst-free reductive arylation between aromatic aldehydes and cyanopyridines with a subsequent oxidation process. The addition of electron-donating and withdrawing substituents on the scaffold allowed effective modification of the absorbance of these compounds in the UV-vis region, while the continuous flow process affords high yields, short residence time, and high throughput.
Collapse
Affiliation(s)
| | - Megan Smyth
- Technology
Department, Almac Sciences, Craigavon BT63 5QD, United Kingdom
| | - Scott Wharry
- Technology
Department, Almac Sciences, Craigavon BT63 5QD, United Kingdom
| | - Thomas S. Moody
- Technology
Department, Almac Sciences, Craigavon BT63 5QD, United Kingdom
- Arran
Chemical Company, Monksland Industrial
Estate, Roscommon N37 DN24, Ireland
| | - Marcus Baumann
- School
of Chemistry, University College Dublin, Science Centre South, Dublin 4, Ireland
| |
Collapse
|
2
|
Senapati S, Parida SK, Karandikar SS, Murarka S. Organophotoredox-Catalyzed Arylation and Aryl Sulfonylation of Morita-Baylis-Hillman Acetates with Diaryliodonium Reagents. Org Lett 2023; 25:7900-7905. [PMID: 37882475 DOI: 10.1021/acs.orglett.3c03146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2023]
Abstract
We report an organophotoredox-catalyzed stereoselective allylic arylation of MBH acetates with a palette of diaryliodonium triflates (DAIRs) to provide the corresponding trisubstituted alkenes in moderate to good yields. The method could be extended to three-component coupling involving 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct (DABSO) as a sulfur dioxide surrogate for the synthesis of biologically relevant allylic sulfones. Both of these reactions were carried out under mild conditions featuring broad scope, robustness, and appreciable functional group tolerance.
Collapse
Affiliation(s)
- Sudip Senapati
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Sayali Sunil Karandikar
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|
3
|
Yan CY, Wu ZW, He XY, Ma YH, Peng XR, Wang L, Yang QQ. Visible-Light-Induced Tandem Radical Brominative Addition/Cyclization of Activated Alkynes with CBr 4 for the Synthesis of 3-Bromocoumarins. J Org Chem 2023; 88:647-652. [PMID: 36480338 DOI: 10.1021/acs.joc.2c01721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
A visible-light-induced tandem radical brominative addition/spiro-cyclization/1,2-ester migration of activated alkynes with CBr4 is developed. This protocol features good functional group tolerance, operational simplicity, and mild reaction conditions without the use of catalysts and external additives, providing easy access to valuable 3-bromocoumarins in generally high yields.
Collapse
Affiliation(s)
- Chen-Yang Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Zheng-Wei Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Rong Peng
- GongAn County People's Hospital, No. 119, Chanling Avenue, Douhudi Town, Gongan County, Jingzhou, Hubei 434300, P. R. China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| |
Collapse
|
4
|
Fernández-Peña L, Matos MJ, López E. Recent Advances in Biologically Active Coumarins from Marine Sources: Synthesis and Evaluation. Mar Drugs 2022; 21:37. [PMID: 36662210 PMCID: PMC9864071 DOI: 10.3390/md21010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Coumarin and its derivatives have significantly attracted the attention of medicinal chemists and chemical biologists due to their huge range of biological, and in particular, pharmacological properties. Interesting families of coumarins have been found from marine sources, which has accelerated the drug discovery process by inspiring innovation or even by the identification of analogues with remarkable biological properties. The purpose of this review is to showcase the most interesting marine-derived coumarins from a medicinal chemistry point of view, as well as the novel and useful synthetic routes described to date to achieve these chemical structures. The references that compose this overview were collected from PubMed, Mendeley and SciFinder.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Department of Organic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Enol López
- Department of Organic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
| |
Collapse
|
5
|
Moghadam Farid S, Seifinoferest B, Gholamhosseyni M, Larijani B, Mahdavi M. Modern metal-catalyzed and organocatalytic methods for synthesis of coumarin derivatives: a review. Org Biomol Chem 2022; 20:4846-4883. [PMID: 35642609 DOI: 10.1039/d2ob00491g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Coumarin is an important pharmaceutical structural motif, abundantly found in numerous commonly used drugs. Compounds containing this core show a broad spectrum of medicinal properties and biological activities. The increasing importance and wide usages of coumarin derivatives have drawn attention to its synthetic methods, among which metal-catalyzed and organocatalytic methods have proved the most effective. Several metal-catalyzed and/or organocatalytic synthetic strategies for coumarin have been investigated and reported in recent decades. This review focuses on more recent reports on catalysis methods for synthesizing coumarin and coumarin-like structures (including light-mediated methods and nano-catalysts), exploring the mechanistic aspects, simplicity, efficiency, repeatability, and other advantages and disadvantages of these methods.
Collapse
Affiliation(s)
- Sara Moghadam Farid
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behnoush Seifinoferest
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maral Gholamhosseyni
- Department of Chemistry, College of Chemistry, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Liu Q, Huo CD, Du Z, Fu Y. Recent Progress in Organophotoredox Reaction. Org Biomol Chem 2022; 20:6721-6740. [DOI: 10.1039/d2ob00807f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
In the past decade, visible light photoredox catalysis has been established as a gentle and powerful strategy for the activation of organic molecules. As an important part of it, organic...
Collapse
|
7
|
Karakaya I. Amphiphilic Polypyridyl Ruthenium Catalyzed, Photoredox‐Mediated C−H Arylation of Heteroarenes with Aryl Diazonium Salts. ChemistrySelect 2021. [DOI: 10.1002/slct.202103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Affiliation(s)
- Idris Karakaya
- Department of Chemistry College of Basic Sciences Gebze Technical University 41400 Gebze Turkey
| |
Collapse
|
8
|
Ortiz-de-Elguea V, Carral-Menoyo A, Simón-Vidal L, Martinez-Nunes M, Barbolla I, Lete MG, Sotomayor N, Lete E. Pd(II)-Catalyzed Fujiwara-Moritani Reactions for the Synthesis and Functionalization of Substituted Coumarins. ACS OMEGA 2021; 6:29483-29494. [PMID: 34778620 PMCID: PMC8581981 DOI: 10.1021/acsomega.1c03469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/02/2021] [Accepted: 10/12/2021] [Indexed: 05/08/2023]
Abstract
Highly substituted coumarins, privileged and versatile scaffolds for bioactive natural products and fluorescence imaging, are obtained via a Pd(II)-catalyzed direct C-H alkenylation reaction (Fujiwara-Moritani reaction), which has emerged as a powerful tool for the construction and functionalization of heterocyclic compounds because of its chemical versatility and its environmental advantages. Thus, a selective 6-endo cyclization led to 4-substituted coumarins in moderate yields. Selected examples have been further functionalized in C3 through a second intermolecular C-H alkenylation reaction to give coumarin-acrylate hybrids, whose fluorescence spectra have been measured.
Collapse
Affiliation(s)
- Verónica Ortiz-de-Elguea
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| | - Asier Carral-Menoyo
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| | - Lorena Simón-Vidal
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| | - Mikel Martinez-Nunes
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| | - Iratxe Barbolla
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
- Instituto
Biofisika (UPV/EHU-CSIC), Leioa 48940, Spain
| | - Marta G. Lete
- CIC
bioGUNE, Bizkaia Technology Park, Building 801A, Derio 48170, Spain
| | - Nuria Sotomayor
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| | - Esther Lete
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, Bilbao 48080, Spain
| |
Collapse
|
9
|
Thadem N, Rajesh M, Das S. Activator free diastereoselective 1,3-dipolar cycloaddition: a quick access to coumarin based spiro multi heterocyclic adducts. RSC Adv 2021; 11:29934-29938. [PMID: 35480285 PMCID: PMC9040763 DOI: 10.1039/d1ra05070b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023] Open
Abstract
A formal diastereoselective 1,3-dipolar cycloaddition of azomethine ylide and coumarin derivatives to construct coumarin based spiro multi heterocyclics has been described. The in situ generation of azo-ylide was achieved for various heterocyclic carbonyls (indenoquinoxaline and isatin). This transformation is also suitable for maleimide dipolarophiles for the synthesis of hydro-maleimide derivatives. These decarboxylative annulations neither required any catalyst nor any activator. Further the pure products were isolated by filtration from the reaction mixture after the reaction under ambient conditions.
Collapse
Affiliation(s)
- Nagender Thadem
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India +91 40 2719 1887
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India +91 40 2719 1887
| | - Saibal Das
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India +91 40 2719 1887
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
10
|
Biji M, Radhakrishnan KV, Lankalapalli RS. Tandem Photoisomerization and Transannular Cyclizations of Zerumbone Epoxide: A Model for Diversity-Oriented Synthesis Using Abundant Natural Products. Org Lett 2021; 23:5871-5875. [PMID: 34254812 DOI: 10.1021/acs.orglett.1c01997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
Photoirradiation of (6E,9E)-zerumbone-2,3-epoxide afforded a diverse range of transannular cyclized products in the presence of a catalytic amount of Sc(OTf)3. At the behest of the geometrical isomers produced by photoirradiation, the diversity encompasses an unprecedented eudesmane core and oxo-bridged hydroxy-olefin skeletons. Structure elucidation and the stereochemical outcome of the products are described via extensive NMR analysis. The present study serves as a model for tandem photoisomerization and transannular cyclization of natural products with enone/dienone functionality.
Collapse
Affiliation(s)
- Mohanan Biji
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kokkuvayil Vasu Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravi S Lankalapalli
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Tan LP, Liang D, Cheng Y, Xiao WJ, Chen JR. Visible-light-induced tandem radical addition/cyclization of 2-alkenylphenols and CBr 4 for the synthesis of 4-arylcoumarins. Org Chem Front 2021. [DOI: 10.1039/d1qo00831e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
A visible-light-induced photoredox-catalyzed tandem radical addition/cyclization of 2-alkenylphenols and CBr4 is developed, providing efficient and practical access to various 4-arylcoumarins in a one-pot fashion.
Collapse
Affiliation(s)
- Li-Ping Tan
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Dong Liang
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|