1
|
Shang Z, Jiao D, Cheng H, Huang D. Direct Synthesis of 2-(4-Hydroxyphenoxy)benzamide Derivatives from 2-Aryloxybenzamide via PhIO-Mediated Oxidation Reaction. Molecules 2024; 29:6048. [PMID: 39770136 PMCID: PMC11679658 DOI: 10.3390/molecules29246048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The 2-(4-hydroxyphenoxy)benzamide scaffold is frequently found in a variety of bioactive compounds, displaying a broad spectrum of properties, such as antibacterial and antitumor effects. In this study, we developed a new method for synthesizing 2-(4-hydroxyphenoxy)benzamide derivatives from 2-aryloxybenzamide via a PhIO-mediated oxidation reaction. The optimal reaction conditions were established as follows: TFA was used as the solvent, PhIO served as the oxidant with a substrate-to-oxidant ratio of 1:2, and the reaction was conducted at room temperature. This method, characterized by mild reaction conditions, broad applicability, and a metal-free nature, considerably improves the accessibility of 2-(4-hydroxyphenoxy)benzamide derivatives, which have been challenging to prepare using previously reported methods.
Collapse
Affiliation(s)
- Zhenhua Shang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (D.J.); (H.C.)
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang 050200, China
| | - Dechen Jiao
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (D.J.); (H.C.)
| | - Haoran Cheng
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (D.J.); (H.C.)
| | - Daowei Huang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (D.J.); (H.C.)
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang 050200, China
| |
Collapse
|
2
|
Handayani D, Aminah I, Pontana Putra P, Eka Putra A, Arbain D, Satriawan H, Efdi M, Celik I, Ekawati Tallei T. The depsidones from marine sponge-derived fungus Aspergillus unguis IB151 as an anti-MRSA agent: Molecular docking, pharmacokinetics analysis, and molecular dynamic simulation studies. Saudi Pharm J 2023; 31:101744. [PMID: 37649676 PMCID: PMC10462890 DOI: 10.1016/j.jsps.2023.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging nosocomial pathogen among hospitalized patients, with high morbidity and mortality rates. The discovery of a novel antibacterial is urgently needed to address this resistance problem. The present study aims to explore the antibacterial potential of three depsidone compounds: 2-clorounguinol (1), unguinol (2), and nidulin (3), isolated from the marine sponge-derived fungus Aspergillus unguis IB1, both in vitro and in silico. The antibacterial activity of all compounds was evaluated by calculating the Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) against MRSA using agar diffusion and total plate count methods, respectively. Bacterial cell morphology changes were studied for the first time using scanning electron microscopy (SEM). Molecular docking, pharmacokinetics analysis, and molecular dynamics simulation were performed to determine possible protein-ligand interactions and the stability of the targeting penicillin-binding protein 2a (PBP2a) against 2-clorounguinol (1). The research findings indicated that compounds 1 to 3 exhibited MIC and MBC values of 2 µg/mL and 16 µg/mL against MRSA, respectively. MRSA cells displayed a distinct shape after the addition of the depsidone compound, as observed in SEM. According to the in silico study, 2-chlorounguinol exhibited the highest binding-free energy (BFE) with PBP2a (-6.7 kcal/mol). For comparison, (E)-3-(2-(4-cyanostyryl)-4-oxoquinazolin-3(4H)-yl) benzoic acid inhibits PBP2a with a BFE less than -6.6 kcal/mol. Based on the Lipinski's rule of 5, depsidone compounds constitute a class of compounds with good pharmacokinetic properties, being easily absorbed and permeable. These findings suggest that 2-chlorounguinol possesses potential antibacterial activity and could be developed as an antibiotic adjuvant to reduce antimicrobial resistance.
Collapse
Affiliation(s)
- Dian Handayani
- Faculty of Pharmacy/Sumatran Biota Laboratory, Andalas University, Padang 25163, Indonesia
| | - Ibtisamatul Aminah
- Faculty of Pharmacy/Sumatran Biota Laboratory, Andalas University, Padang 25163, Indonesia
- Department of Biomedical Science, Faculty of Medicine, Andalas University, Padang 25163, Indonesia
| | - Purnawan Pontana Putra
- Faculty of Pharmacy/Sumatran Biota Laboratory, Andalas University, Padang 25163, Indonesia
| | - Andani Eka Putra
- Department of Biomedical Science, Faculty of Medicine, Andalas University, Padang 25163, Indonesia
| | - Dayar Arbain
- Faculty of Pharmacy, 17 Agustus 1945 University, Sunter Permai Raya St, Jakarta 14350, Indonesia
| | - Herland Satriawan
- Institute of Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mai Efdi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang 25163, Indonesia
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| |
Collapse
|
3
|
Yang J, Zhou Z, Chen Y, Song Y, Ju J. Characterization of the depsidone gene cluster reveals etherification, decarboxylation and multiple halogenations as tailoring steps in depsidone assembly. Acta Pharm Sin B 2023; 13:3919-3929. [PMID: 37719379 PMCID: PMC10501868 DOI: 10.1016/j.apsb.2023.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 09/19/2023] Open
Abstract
Depsides and depsidones have attracted attention for biosynthetic studies due to their broad biological activities and structural diversity. Previous structure‒activity relationships indicated that triple halogenated depsidones display the best anti-pathogenic activity. However, the gene cluster and the tailoring steps responsible for halogenated depsidone nornidulin (3) remain enigmatic. In this study, we disclosed the complete biosynthetic pathway of the halogenated depsidone through in vivo gene disruption, heterologous expression and in vitro biochemical experiments. We demonstrated an unusual depside skeleton biosynthesis process mediated by both highly-reducing polyketide synthase and non-reducing polyketide synthase, which is distinct from the common depside skeleton biosynthesis. This skeleton was subsequently modified by two in-cluster enzymes DepG and DepF for the ether bond formation and decarboxylation, respectively. In addition, the decarboxylase DepF exhibited substrate promiscuity for different scaffold substrates. Finally, and interestingly, we discovered a halogenase encoded remotely from the biosynthetic gene cluster, which catalyzes triple-halogenation to produce the active end product nornidulin (3). These discoveries provide new insights for further understanding the biosynthesis of depsidones and their derivatives.
Collapse
Affiliation(s)
- Jiafan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
| | - Zhenbin Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
| | - Yingying Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 110039, China
| |
Collapse
|
4
|
Khayat MT, Ghazawi KF, Samman WA, Alhaddad AA, Mohamed GA, Ibrahim SRM. Recent advances on natural depsidones: sources, biosynthesis, structure-activity relationship, and bioactivities. PeerJ 2023; 11:e15394. [PMID: 37197584 PMCID: PMC10184659 DOI: 10.7717/peerj.15394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Depsidones are a class of polyphenolic polyketides that have been proposed to be biosynthesized from oxidative coupling of esters of two polyketidic benzoic acid derivatives. They are principally encountered in fungi and lichens. In addition to their diversified structural features, they revealed varied bioactivities such as antimicrobial, antimalarial, cytotoxic, anti-inflammatory, anti-Helicobacter pylori, antimycobacterial, antihypertensive, anti-diarrheal, antidiabetic, phytotoxic, anti-HIV, anti-osteoclastogenic, and butyrylcholinesterase, tyrosinase, hyaluronidase, and acetylcholinesterase inhibition. The current work was targeted to provide an overview on the naturally reported depsidones from various sources in the period from 2018 to the end of 2022 including their structures, biosynthesis, sources, and bioactivities, as well as the reported structure-activity relationship and semisynthetic derivatives. A total of 172 metabolites with 87 references were reviewed. The reported findings unambiguously demonstrated that these derivatives could be promising leads for therapeutic agents. However, further in-vivo evaluation of their potential biological properties and mechanistic investigations are needed.
Collapse
Affiliation(s)
- Maan T. Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kholoud F. Ghazawi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waad A. Samman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Aisha A. Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabrin RM Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Chemistry, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Zhang C, Lum KY, Taki AC, Gasser RB, Byrne JJ, Montaner LJ, Tietjen I, Avery VM, Davis RA. Using a Bioactive Eremophila-Derived Serrulatane Scaffold to Generate a Unique Carbamate Library for Anti-infective Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:557-565. [PMID: 36799121 DOI: 10.1021/acs.jnatprod.2c01041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The known Eremophila microtheca-derived diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid (1) was targeted for large-scale purification, as this bioactive plant compound has proven to be an attractive scaffold for semisynthetic studies and subsequent library generation. Compound 1 was converted to a selectively protected trimethyl derivative, 3-hydroxy-7,8-dimethoxyserrulat-14-en-19-oic acid methyl ester (2), using simple and rapid methylation conditions. The resulting scaffold 2 was reacted with a diverse series of commercially available isocyanates to generate an 11-membered carbamate-based library. The chemical structures of the 11 new semisynthetic analogues were fully characterized by spectroscopic and spectrometric analysis. All natural products and semisynthetic compounds were evaluated for their anthelmintic, antimalarial, and anti-HIV activities. Compound 3 was shown to elicit the greatest antiplasmodial activity of all compounds tested, with IC50 values of 4.6 and 11.6 μM against Plasmodium falciparum 3D7 and Dd2, respectively. Compound 11 showed the greatest inhibition of development to fourth-stage Haemonchus contortus larvae (L4) and induction of a skinny (Ski) phenotype (67.5% of nematodes) at 50 μM. Compound 7, which inhibited 59.0% of HIV production at 100 μg/mL, was the carbamate analogue that displayed the best antiviral activity.
Collapse
Affiliation(s)
- Chen Zhang
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Kah Yean Lum
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Luis J Montaner
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Ian Tietjen
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
6
|
Qi YK, Tang X, Wei NN, Pang CJ, Du SS, Wang KW. Discovery, synthesis, and optimization of teixobactin, a novel antibiotic without detectable bacterial resistance. J Pept Sci 2022; 28:e3428. [PMID: 35610021 DOI: 10.1002/psc.3428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Discovering new antibiotics with novel chemical scaffolds and antibacterial mechanisms presents a challenge for medicinal scientists worldwide as the ever-increasing bacterial resistance poses a serious threat to human health. A new cyclic peptide-based antibiotic termed teixobactin was discovered from a screen of uncultured soil bacteria through iChip technology in 2015. Teixobactin exhibits excellent antibacterial activity against all the tested gram-positive pathogens and Mycobacterium tuberculosis, including drug-resistant strains. Given that teixobactin targets the highly conserved lipid II and lipid III, which induces the simultaneous inhibition of both peptidoglycan and teichoic acid synthesis, the emergence of resistance is considered to be rather difficult. The novel structure, potent antibacterial activity, and highly conservative targets make teixobactin a promising lead compound for further antibiotic development. This review provides a comprehensive treatise on the advances of teixobactin in the areas of discovery processes, antibacterial activity, mechanisms of action, chemical synthesis, and structural optimizations. The synthetic methods for the key building block l-allo-End, natural teixobactin, representative teixobactin analogues, as well as the structure-activity relationship studies will be highlighted and discussed in details. Finally, some insights into new trends for the generation of novel teixobactin analogues and tips for future work and directions will be commented.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China.,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ning-Ning Wei
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Cheng-Jian Pang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ke Wei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Zhang Y, Li Z, Huang B, Liu K, Peng S, Liu X, Gao C, Liu Y, Tan Y, Luo X. Anti-Osteoclastogenic and Antibacterial Effects of Chlorinated Polyketides from the Beibu Gulf Coral-Derived Fungus Aspergillus unguis GXIMD 02505. Mar Drugs 2022; 20:178. [PMID: 35323477 PMCID: PMC8956104 DOI: 10.3390/md20030178] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
One new depsidone derivative, aspergillusidone H (3), along with seven known biosynthetically related chlorinated polyketides, were obtained from the Beibu Gulf coral-derived fungus Aspergillus unguis GXIMD 02505. Their structures were determined by comprehensive physicochemical and spectroscopic data interpretation. Notably, the X-ray crystal structure of 2 and the previously unknown absolute configuration of 8, assigned by ECD calculations, are described here for the first time. Compounds 1-5, 7 and 8 exhibited inhibition of lipopolysaccharide (LPS)-induced NF-κB in RAW 264.7 macrophages at 20 μM. In addition, the two potent inhibitors (2 and 7) dose-dependently suppressed RANKL-induced osteoclast differentiation without any evidence of cytotoxicity in bone marrow macrophages cells (BMMs). This is the first report of osteoclastogenesis inhibitory activity for the metabolites of these kinds. Besides, compounds 1, 2, 4, and 6-8 showed inhibitory activity against marine biofilm-forming bacteria, methicillin-resistant Staphylococcus aureus, Microbulbifer variabilis, Marinobacterium jannaschii, and Vibrio pelagius, with their MIC values ranging from 2 to 64 μg/mL. These findings provide a basis for further development of chlorinated polyketides as potential inhibitors of osteoclast differentiation and/or for use as anti-fouling agents.
Collapse
Affiliation(s)
- Yanting Zhang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Z.); (B.H.); (K.L.); (S.P.); (X.L.); (C.G.)
| | - Zhichao Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China;
| | - Bingyao Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Z.); (B.H.); (K.L.); (S.P.); (X.L.); (C.G.)
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Z.); (B.H.); (K.L.); (S.P.); (X.L.); (C.G.)
| | - Shuai Peng
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Z.); (B.H.); (K.L.); (S.P.); (X.L.); (C.G.)
| | - Xinming Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Z.); (B.H.); (K.L.); (S.P.); (X.L.); (C.G.)
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Z.); (B.H.); (K.L.); (S.P.); (X.L.); (C.G.)
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Z.); (B.H.); (K.L.); (S.P.); (X.L.); (C.G.)
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China;
| | - Xiaowei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Z.); (B.H.); (K.L.); (S.P.); (X.L.); (C.G.)
| |
Collapse
|
8
|
Nguyen HT, Morshed MT, Vuong D, Crombie A, Lacey E, Garg S, Pi H, Woolford L, Venter H, Page SW, Piggott AM, Trott DJ, Ogunniyi AD. Evaluation of Benzguinols as Next-Generation Antibiotics for the Treatment of Multidrug-Resistant Bacterial Infections. Antibiotics (Basel) 2021; 10:antibiotics10060727. [PMID: 34208698 PMCID: PMC8233939 DOI: 10.3390/antibiotics10060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Our recent focus on the “lost antibiotic” unguinol and related nidulin-family fungal natural products identified two semisynthetic derivatives, benzguinols A and B, with unexpected in vitro activity against Staphylococcus aureus isolates either susceptible or resistant to methicillin. Here, we show further activity of the benzguinols against methicillin-resistant isolates of the animal pathogen Staphylococcus pseudintermedius, with minimum inhibitory concentration (MIC) ranging 0.5–1 μg/mL. When combined with sub-inhibitory concentrations of colistin, the benzguinols demonstrated synergy against Gram-negative reference strains of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa (MICs of 1–2 μg/mL in the presence of colistin), whereas the benzguinols alone had no activity. Administration of three intraperitoneal (IP) doses of 20 mg/kg benzguinol A or B to mice did not result in any obvious adverse clinical or pathological evidence of acute toxicity. Importantly, mice that received three 20 mg/kg IP doses of benzguinol A or B at 4 h intervals exhibited significantly reduced bacterial loads and longer survival times than vehicle-only treated mice in a bioluminescent S. aureus murine sepsis challenge model. We conclude that the benzguinols are potential candidates for further development for specific treatment of serious bacterial infections as both stand-alone antibiotics and in combination with existing antibiotic classes.
Collapse
Affiliation(s)
- Hang Thi Nguyen
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, SA 5371, Australia; (H.T.N.); (H.P.)
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| | - Mahmud T. Morshed
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (M.T.M.); (E.L.); (A.M.P.)
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia; (D.V.); (A.C.)
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia; (D.V.); (A.C.)
| | - Ernest Lacey
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (M.T.M.); (E.L.); (A.M.P.)
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia; (D.V.); (A.C.)
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Hongfei Pi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, SA 5371, Australia; (H.T.N.); (H.P.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, SA 5371, Australia;
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Stephen W. Page
- Advanced Veterinary Therapeutics, Newtown, NSW 2042, Australia;
| | - Andrew M. Piggott
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (M.T.M.); (E.L.); (A.M.P.)
| | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, SA 5371, Australia; (H.T.N.); (H.P.)
- Correspondence: (D.J.T.); (A.D.O.); Tel.: +61-883-137-989 (D.J.T.); +61-432-331-914 (A.D.O.)
| | - Abiodun D. Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, SA 5371, Australia; (H.T.N.); (H.P.)
- Correspondence: (D.J.T.); (A.D.O.); Tel.: +61-883-137-989 (D.J.T.); +61-432-331-914 (A.D.O.)
| |
Collapse
|
9
|
Nguyen HT, Venter H, Veltman T, Williams R, O'Donovan LA, Russell CC, McCluskey A, Page SW, Ogunniyi AD, Trott DJ. In vitro synergistic activity of NCL195 in combination with colistin against Gram-negative bacterial pathogens. Int J Antimicrob Agents 2021; 57:106323. [PMID: 33746046 DOI: 10.1016/j.ijantimicag.2021.106323] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
In this study, the potential of using the novel antibiotic NCL195 combined with subinhibitory concentrations of colistin against infections caused by Gram-negative bacteria (GNB) was investigated. We showed synergistic activity of the combination NCL195 + colistin against clinical multidrug-resistant GNB pathogens with minimum inhibitory concentrations (MICs) for NCL195 ranging from 0.5-4 μg/mL for Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, whereas NCL195 alone had no activity. Transmission electron microscopy of the membrane morphology of E. coli and P. aeruginosa after single colistin or combination drug treatment showed marked ultrastructural changes most frequently in the cell envelope. Exposure to NCL195 alone did not show any change compared with untreated control cells, whereas treatment with the NCL195 + colistin combination caused more damage than colistin alone. Direct evidence for this interaction was demonstrated by fluorescence-based membrane potential measurements. We conclude that the synergistic antimicrobial activity of the combination NCL195 + colistin against GNB pathogens warrants further exploration for specific treatment of acute GNB infections.
Collapse
Affiliation(s)
- Hang Thi Nguyen
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia; Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Tania Veltman
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Ruth Williams
- Adelaide Microscopy, University of Adelaide, Adelaide, SA, Australia
| | - Lisa Anne O'Donovan
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food & Wine, University of Adelaide, SA, Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | | - Abiodun David Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
| |
Collapse
|