1
|
Hashimoto N, Taguchi J, Kasagi T, Arichi N, Inuki S, Ohno H. Construction of the Akuammiline Alkaloid Core Structure via Stereoselective E-Ring Formation. J Org Chem 2024; 89:10388-10392. [PMID: 38952036 DOI: 10.1021/acs.joc.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Construction of the core structure of akuammiline alkaloids with three-dimensional cage-like structures for their diversity-oriented synthesis was investigated. Extensive exploration centered around the introduction of nitrogen functional groups and construction of the E-ring in an intramolecular or intermolecular manner revealed that a Claisen rearrangement approach involving intramolecular amination provided a common precursor, potentially facilitating divergent access to various types of akuammiline alkaloids.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junichi Taguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Kasagi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Ma F, Li Y, Akkarasereenon K, Qiu H, Cheung YT, Guo Z, Tong R. Aza-Achmatowicz rearrangement coupled with intermolecular aza-Friedel-Crafts enables total syntheses of uleine and aspidosperma alkaloids. Chem Sci 2024; 15:5730-5737. [PMID: 38638226 PMCID: PMC11023026 DOI: 10.1039/d4sc00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Aspidosperma and uleine alkaloids belong to the large family of monoterpene indole alkaloids with diverse biological activities and thus have attracted extensive synthetic interest. Reported is the development of a new synthetic strategy that allows direct C3-C2' linkage of indoles with functionalized 2-hydroxypiperidines to construct the core common to all aspidoserma and uleine alkaloids. Such indole-piperidine linkage is enabled by coupling aza-Achmatowicz rearrangement (AAR) with indoles via an intermolecular aza-Friedel-Crafts (iAFC) reaction. This AAR-iAFC reaction proceeds under mild acidic conditions with wide tolerance of functional groups (33 examples). The synthetic application of the AAR-iAFC method was demonstrated with collective total syntheses of 3 uleine-type and 6 aspidosperma alkaloids: (+)-3-epi-N-nor-dasycarpidone, (+)-3-epi-dasycarpidone, (+)-3-epi-uleine, 1,2-didehydropseudoaspidospermidine, 1,2-dehydroaspidospermidine, vincadifformine, winchinine B, aspidospermidine, and N-acetylaspidospermidine. We expect that this AAR-iAFC strategy is applicable to other monoterpene indole alkaloids with the C3-C2' linkage of indoles and piperidines.
Collapse
Affiliation(s)
- Foqing Ma
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Yunlong Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Kornkamon Akkarasereenon
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Huiying Qiu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Yuen Tsz Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| |
Collapse
|
3
|
Hashimoto N, Taguchi J, Arichi N, Inuki S, Ohno H. Gold(I)-Catalyzed Cascade Cyclization of Alkynyl Indoles for the Stereoselective Construction of the Quaternary Carbon Center of Akuammiline Alkaloids. J Org Chem 2023. [PMID: 38051730 DOI: 10.1021/acs.joc.3c02142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A gold-catalyzed cyclization reaction of alkynyl-indoles has been developed for the stereoselective construction of the quaternary carbon center of fused indolines. This reaction efficiently produces fused indolines via diastereoselective 6-endo-dig cyclization controlled by a bulky TIPS group, followed by nucleophilic attack of the carboxy group on the resulting imine. The lactone moiety of the fused indoline can be reductively cleaved to produce a tricyclic indoline, which could be useful for the synthesis of akuammiline alkaloids.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junichi Taguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Cheng WF, Ma S, Lai YT, Cheung YT, Akkarasereenon K, Zhou Y, Tong R. BiBr 3 -Mediated Intramolecular Aza-Prins Cyclization of Aza-Achmatowicz Rearrangement Products: Asymmetric Total Synthesis of Suaveoline and Sarpagine Alkaloids. Angew Chem Int Ed Engl 2023; 62:e202311671. [PMID: 37724977 DOI: 10.1002/anie.202311671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
An intramolecular aza-Prins cyclization of aza-Achmatowicz rearrangement products was developed in which bismuth tribromide (BiBr3 ) plays a dual role as an efficient Lewis acid and source of the bromide nucleophile. This approach enables the facile construction of highly functionalized 9-azabicyclo[3.3.1]nonanes (9-ABNs), which are valuable synthetic building blocks and a powerful platform for the synthesis of a variety of alkaloid natural products and drug molecules. Suitable substrates for the aza-Prins cyclization include 1,1-disubstituted alkenes, 1,2-disubstituted alkenes, alkynes, and allenes, with good to excellent yields observed. Finally, we showcase the application of this new approach to the enantioselective total synthesis of six indole alkaloids: (-)-suaveoline (1), (-)-norsuaveoline (2), (-)-macrophylline (3), (+)-normacusine B (4), (+)-Na -methyl-16-epipericyclivine (5) and (+)-affinisine (6) in a total of 9-14 steps. This study significantly expands the synthetic utility of the aza-Achmatowicz rearrangement, and the strategy (aza-Achmatowicz/aza-Prins) is expected to be applicable to the total synthesis of other members of the big family of macroline and sarpagine indole alkaloids.
Collapse
Affiliation(s)
- Wai Fung Cheng
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Shiqiang Ma
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yin Tung Lai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yuen Tsz Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Kornkamon Akkarasereenon
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yiqin Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
5
|
Greiner LC, Inuki S, Arichi N, Oishi S, Suzuki R, Iwai T, Sawamura M, Hashmi ASK, Ohno H. Access to Indole-Fused Benzannulated Medium-Sized Rings through a Gold(I)-Catalyzed Cascade Cyclization of Azido-Alkynes. Chemistry 2021; 27:12992-12997. [PMID: 34110644 DOI: 10.1002/chem.202101824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 02/05/2023]
Abstract
Because benzannulated and indole-fused medium-sized rings are found in many bioactive compounds, combining these fragments might lead to unexplored areas of biologically relevant and uncovered chemical space. Herein is shown that α-imino gold carbene chemistry can play an important role in solving the difficulty in the formation of medium-sized rings. Namely, phenylene-tethered azido-alkynes undergo arylative cyclization through the formation of a gold carbene intermediate to afford benzannulated indole-fused medium-sized tetracycles. The reactions allow a range of different aryl substitution patterns and efficient access to these otherwise difficult-to-obtain medium-sized rings. This study also demonstrates the feasibility of the semihollow-shaped C-dtbm ligand for the construction of a nine-membered ring.
Collapse
Affiliation(s)
- Luca C Greiner
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Current Address: Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yashima-ku, Kyoto, 607-8412, Japan
| | - Rikito Suzuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Current Address: Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Greiner LC, Matsuoka J, Inuki S, Ohno H. Azido-Alkynes in Gold(I)-Catalyzed Indole Syntheses. CHEM REC 2021; 21:3897-3910. [PMID: 34498385 DOI: 10.1002/tcr.202100202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Indexed: 12/20/2022]
Abstract
The exploitation of nitrogen-functionalized reactive intermediates plays an important role in the synthesis of biologically relevant scaffolds in the field of pharmaceutical sciences. Those based on gold carbenes carry a strong potential for the design of highly efficient cascade processes toward the synthesis of compounds containing a fused indole core structure. This personal account gives a detailed explanation of our contribution to this sector, and embraces the reaction development of efficient gold-catalyzed cascade processes based on diversely functionalized azido-alkynes. Challenging cyclizations and their subsequent application in the synthesis of pharmaceutically relevant scaffolds and natural products conducted in an intra- or intermolecular fashion are key features of our research.
Collapse
Affiliation(s)
- Luca C Greiner
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junpei Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan.,Current address: Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, 610-0395, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|