1
|
Chen D, Sha J, Mei X, Ye A, Zhao Z, Qiu X, Liu X, Niu Y, Zuo P, Zhuang Q. Ultralow k covalent organic frameworks enabling high fidelity signal transmission and high temperature electromechanical sensing. Nat Commun 2024; 15:10864. [PMID: 39738034 DOI: 10.1038/s41467-024-55191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
As integrated circuits have developed towards the direction of complexity and miniaturization, there is an urgent need for low dielectric constant materials to effectively realize high-fidelity signal transmission. However, there remains a challenge to achieve ultralow dielectric constant and ultralow dielectric loss over a wide temperature range, not to mention having excellent thermal conductivity and processability concurrently. We herein prepare dual-linker freestanding covalent organic framework films with tailorable fluorine content via interfacial polymerization. The covalent organic framework possesses an ultralow dielectric constant (1.25 at 1 kHz, ≈1.2 at 6 G band), ultralow dielectric loss (0.0015 at 1 kHz) with a thermal conductivity of 0.48 Wm-1K-1. We show high-fidelity signal transmission based on the large-sized (>15 cm2) COF films, far exceeding the most commercially available polyimide-based printed circuit board. In addition, the covalent organic framework also features excellent electret properties, which allows for active high-temperature electromechanical sensing. The electrode nanogenerator maintains 90% of the output voltage at 120 °C, outperforming the traditional fluorinated ethylene propylene electret. Collectively, this work paves the way for scalable application of ultralow dielectric constant covalent organic framework thin films in signal transmission and electromechanical sensing.
Collapse
Affiliation(s)
- Donglin Chen
- Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Juncheng Sha
- Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Xudong Mei
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - An Ye
- School of Physics, East China University of Science and Technology, Shanghai, P. R. China
| | - Zhengping Zhao
- Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Xunlin Qiu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, P. R. China.
- Shanghai Institute of Aircraft Mechanics and Control, Shanghai, P. R. China.
| | - Xiaoyun Liu
- Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yueping Niu
- School of Physics, East China University of Science and Technology, Shanghai, P. R. China
| | - Peiyuan Zuo
- Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China.
| | - Qixin Zhuang
- Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China.
| |
Collapse
|
2
|
Chen YC, Reddy KSK, Lin YA, Wang MW, Lin CH. Tetrafluorophenylene-Containing Vinylbenzyl Ether-Terminated Oligo(2,6-dimethyl-1,4-phenylene ether) with Better Thermal, Dielectric, and Flame-Retardant Properties for Application in High-Frequency Communication. ACS OMEGA 2022; 7:26396-26406. [PMID: 35936464 PMCID: PMC9352225 DOI: 10.1021/acsomega.2c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In an integrated circuit, signal propagation loss is proportional to the frequency, dissipation factor (D f), and square root of dielectric constant (D k). The loss becomes obvious as we move to high-frequency communication. Therefore, a polymer having low D k and D f is critical for copper-clad laminates at higher frequencies. For this purpose, a 4-vinylbenzyl ether phenoxy-2,3,5,6-tetrafluorophenylene-terminated OPE (VT-OPE) resin was synthesized and its properties were compared with the thermoset of commercial OPE-2St resin. The thermoset of VT-OPE shows a higher T g (242 vs 229 °C), a relatively high cross-linking density (1.59 vs 1.41 mmole cm-3), a lower coefficient of thermal expansion (55 vs 76 ppm/°C), better dielectric characteristic at 10 GHz (D k values of 2.58 vs 2.75, D f values of 0.005 vs 0.006), lower water absorption (0.135 vs 0.312 wt %), and better flame retardancy (UL-94 VTM-0 vs VTM-1 with dropping seriously) than the thermoset of OPE-2St. To verify the practicability of VT-OPE for copper-clad laminate, a laboratory process was also performed to prepare a copper-clad laminate, which shows a high peeling strength with copper foil (5.5 lb/in), high thermal reliability with a solder dipping test at 288 °C (>600 s), and the time for delamination of the laminate in thermal mechanical analysis (TMA) at 288 °C is over 60 min.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, 106, No. 1, Section 4, Roosevelt
Road, Room 219, School of Engineering Complex, Taipei 10617, Taiwan
| | - Kamani Sudhir K. Reddy
- Department
of Chemical Engineering, National Chung
Hsing University, No. 145, Xingda Road, South District, Taichung 40227, Taiwan
| | - Yu-An Lin
- Department
of Chemical Engineering, National Chung
Hsing University, No. 145, Xingda Road, South District, Taichung 40227, Taiwan
| | - Meng-Wei Wang
- Advanced
Material Development Department, Swancor
High polymer Company Limited by Shares, Nantou 54066, Taiwan
| | - Ching-Hsuan Lin
- Department
of Chemical Engineering, National Chung
Hsing University, No. 145, Xingda Road, South District, Taichung 40227, Taiwan
| |
Collapse
|
3
|
Ma Y, He Z, Liao Z, Han Y, Zhang J, Zhu M. Porous structure contained polyimide film with enhanced dielectric properties upon high temperature. J Appl Polym Sci 2022. [DOI: 10.1002/app.52936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yingyi Ma
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Zian He
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Ziwei Liao
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Yuhang Han
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Junming Zhang
- School of Material Science and Chemical Engineering Harbin University of Science and Technology Harbin China
| | - Min Zhu
- School of Electrical Engineering and Automation Harbin Institute of Technology Harbin China
| |
Collapse
|
4
|
Néron S, Morency M, Chen L, Maris T, Rochefort D, Iftimie R, Wuest JD. Diphenoquinones Redux. J Org Chem 2022; 87:7673-7695. [PMID: 35667025 DOI: 10.1021/acs.joc.2c00260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzoquinones can undergo reversible reductions and are attractive candidates for use as active materials in green carbon-based batteries. Related compounds of potential utility include 4,4'-diphenoquinones, which have extended quinonoid structures with two carbonyl groups in different rings. Diphenoquinones are a poorly explored class of compounds, but a wide variety can be synthesized, isolated, crystallized, and fully characterized. Experimental and computational approaches have established that typical 4,4'-diphenoquinones have nearly planar cores in which two cyclohexadienone rings are joined by an unusually long interannular C═C bond. Derivatives unsubstituted at the 3,3',5,5'-positions react readily by hydration, dimerization, and other processes. Association of diphenoquinones in the solid state normally produces chains or sheets held together by multiple C-H···O interactions, giving structures that differ markedly from those of the corresponding 4,4'-dihydroxybiphenyls. Electrochemical studies in solution and in the solid state show that diphenoquinones are reduced rapidly and reversibly at potentials higher than those of analogous benzoquinones. Together, these results help bring diphenoquinones into the mainstream of modern chemistry and provide a foundation for developing redox-active derivatives for use in carbon-based electrochemical devices.
Collapse
Affiliation(s)
- Sébastien Néron
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Mathieu Morency
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Liguo Chen
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Thierry Maris
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Dominic Rochefort
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Radu Iftimie
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - James D Wuest
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
5
|
Peng W, Lei H, Qiu L, Bao F, Huang M. Perfluorocyclobutyl-containing transparent polyimides with low dielectric constant and low dielectric loss. Polym Chem 2022. [DOI: 10.1039/d2py00550f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of loose chain packing and high fluoro content endows PFCB-containing polyimides with excellent optical transparency and dielectric properties.
Collapse
Affiliation(s)
- Weifeng Peng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Luhao Qiu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Feng Bao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Huang G, Fang L, Wang C, Dai M, Sun J, Fang Q. A bio-based low dielectric material at a high frequency derived from resveratrol. Polym Chem 2021. [DOI: 10.1039/d0py01446j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient strategy to design and synthesize a low dielectric material at a high frequency of 5 GHz derived from renewable resveratrol.
Collapse
Affiliation(s)
- Gang Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Linxuan Fang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Caiyun Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Menglu Dai
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Jing Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Qiang Fang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|