1
|
Udepurkar AP, Dermaut W, Clasen C, Kuhn S. Continuous generation of cross-linked polymer nanoparticles employing an ultrasonic microreactor. ULTRASONICS SONOCHEMISTRY 2023; 101:106666. [PMID: 37922718 PMCID: PMC10641723 DOI: 10.1016/j.ultsonch.2023.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/12/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
In this article, a new system employing an ultrasonic microreactor coupled with a tubular reactor is presented for the continuous generation of polymer nanoparticles. The continuous generation of cross-linked polymer nanoparticles utilizing the monomer butyl methacrylate and the cross-linker ethylene glycol dimethacrylate is demonstrated. Firstly, the miniemulsion polymerization of a monomer-in-water miniemulsion is studied in a batch system. Secondly, a coiled tubular reactor is employed for the continuous polymerization of the miniemulsion generated by an ultrasonic microreactor. Finally, the influence of monomer volume fraction and surfactant concentration on the synthesized polymer nanoparticles is studied. Polymer particles in a size range of 50-250 nm are synthesized and a high polymerization conversion is achieved utilizing the system demonstrated in this article.
Collapse
Affiliation(s)
- Aniket Pradip Udepurkar
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Wim Dermaut
- Materials Technology Center - Chemical Process Development, Agfa-Gevaert NV, Septestraat 27, 2640 Mortsel, Belgium
| | - Christian Clasen
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Liang H, Chen L, Zhang H, Liu X. Simple Method to Generate Droplets Spontaneously by a Superhydrophobic Double-Layer Split Nozzle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4730-4738. [PMID: 36961251 DOI: 10.1021/acs.langmuir.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Given the problems of traditional droplet generation devices, such as the complex structure and processing technology, difficulty in droplet separation, and low transfer accuracy, we propose a low-adhesion superhydrophobic double-layer split nozzle (SDSN). It realizes spontaneous droplet generation by using an interfacial tension force inside the micro-hole to drive the droplet snap-off. It successfully achieves stable and highly consistent droplets on the micrometer-scale circular micro-hole. Droplets with a volume in the range of 0.65-1.75 ± 0.007 μL can be precisely achieved by adjusting the hole size of the SDSN from 100 to 500 μm. The SDSN is prepared by conventional mechanical drilling, chemical etching, and low surface energy modification. Compared with traditional droplet generation devices, no photolithography process is required, and the cost is lower. Moreover, the droplets can be obtained directly without any post-processing, avoiding the problem of separating droplets from another solution. The stability of SDSN is good, and the droplet volume is not affected by the fluctuation of external conditions. The rate of droplet generation can be freely adjusted by adjusting the speed of the electronic microinjection pump without affecting the droplet volume. It enables efficient droplet transfer without liquid residue, which improves the transfer accuracy and helps to save the use of expensive reagents. This simple but effective structure will be of great help to make breakthroughs in next-generation spontaneous droplet generation, liquid transport, and digital microfluidic devices.
Collapse
Affiliation(s)
- Hao Liang
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Liang Chen
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Haifeng Zhang
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaowei Liu
- Key Laboratory of Micro-Systems and Micro-structures Manufacturing, Ministry of Education, Harbin 150001, China
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource & Environment (Harbin Institute of Technology), Harbin 150001, China
| |
Collapse
|
3
|
Lohmann V, Rolland M, Truong NP, Anastasaki A. Controlling size, shape, and charge of nanoparticles via low-energy miniemulsion and heterogeneous RAFT polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Yu S, Zhang T, Xing J. A facile approach preparing PMMA nanospheres through in-situ surfactant miniemulsion photopolymerization under green LED irradiation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Jin Z, Wang H, Hu X, Liu Y, Hu Y, Zhao S, Zhu N, Fang Z, Guo K. Anionic polymerizations in a microreactor. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00360g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anionic polymerizations in a microreactor enable fast mixing, high-level control, and scale-up synthesis of polymers.
Collapse
Affiliation(s)
- Zhao Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Huiyue Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Shuangfei Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| |
Collapse
|
6
|
Nauman N, Boyer C, Zetterlund PB. Miniemulsion polymerization via membrane emulsification: Exploring system feasibility for different monomers. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Guimarães TR, Delafresnaye L, Zhou D, Barner-Kowollik C, Zetterlund PB. Multisegmented polymers via step-growth and RAFT miniemulsion polymerization. Polym Chem 2021. [DOI: 10.1039/d1py01163d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a method to efficiently prepare multisegmented polymers via a combination of step-growth (SG) and reversible addition-fragmentation chain transfer (RAFT) polymerization.
Collapse
Affiliation(s)
- Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Laura Delafresnaye
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Dewen Zhou
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|