1
|
Chen X, Chen J, Su W, Su J, Zou Q, Zhang Z. Dynamic monitoring of self-assembly by confining conformational changes of butterfly-motion-based molecules. Chem Commun (Camb) 2023; 59:11999-12002. [PMID: 37727890 DOI: 10.1039/d3cc03017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A simple dynamic monitoring strategy for chiral self-assembly is achieved by confining the bent-to-planar evolution observed in N,N'-diphenyl-dihydrodibenzo[a,c]phenazine derivatives (DPAC-R/S-GLD). Besides, this approach provides a facile pathway to fabricate architectures with circularly polarized luminescence (CPL) properties.
Collapse
Affiliation(s)
- Xuanying Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiacheng Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wenyuan Su
- Shanghai United International School Wanyuan Campus, Shanghai 201102, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Gao F, Chen J, Cao Q, Li Q, Zheng J, Li X. Three Different Types of Asymmetric Polymerization of Aryl Isocyanides by Using Simple Rare-Earth Metal Trialkyl Precursors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Feng Gao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jupeng Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Qingbin Cao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Qiaozhen Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jie Zheng
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Xiaofang Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
3
|
Zhong H, Zhang Y, Deng J. Optically active porous hybrid particles constructed by alkynylated cellulose nanocrystals, helical substituted polyacetylene, and inorganic silica for enantio-differentiating towards naproxen. Chirality 2021; 34:48-60. [PMID: 34725862 DOI: 10.1002/chir.23382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022]
Abstract
This article reports on a novel type of ternary chiral porous hybrid particles (TCPHPs) constructed by alkynylated cellulose nanocrystals (A-CNCs), helical substituted polyacetylene, and inorganic silica. The resulting TCPHPs combine the respective advantages of the three components. A-CNCs serve as stabilizer, co-monomer, and chiral source simultaneously and transfer their chirality to the resulting helical substituted polyacetylenes in the course of copolymerization with achiral acetylenic monomer following "sergeants and soldiers rule". Helical substituted polyacetylenes form chiral helical structures and thus endow TCPHPs with the anticipated optical activity. Inorganic silica constitutes the rigid framework and is covalently bonded with the organic components through hydrolysis of Si-O-Et groups. Phase separation between the organic and inorganic components renders TCPHPs with abundant pores. Scanning electron microscope (SEM) images confirm the formation of spherical particles with porous structures. Circular dichroism spectra demonstrate the optical activity of the chiral hybrid particles. The as-prepared TCPHPs exhibit capacity for enantio-differentiating performance towards chiral naproxen.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
4
|
Belay TA, Chen J, Xu H, Zhang S, Chen S, Li X. Functionalization Methodology for Synthesis of Silane-End-Functionalized Linear and Star Poly(aryl isocyanide)s by Combination of Cationic Polymerization and Hydrosilylation Reaction. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tuemay Abadi Belay
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jupeng Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Huan Xu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Shilu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Xiaofang Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
5
|
Zhuo H, Guan DB, He JC, Xu HB, Zeng MH. Stepwise Increase of Nd III -Based Phosphorescence by AIE-Active Sensitizer: Broadening the AIPE Family from Transition Metals to Discrete Near-Infrared Lanthanide Complexes*. Chemistry 2021; 27:16204-16211. [PMID: 34523762 DOI: 10.1002/chem.202103028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 02/05/2023]
Abstract
We designed two near-infrared (NIR) lanthanide complexes [(L)2 -Nd(NO3 )3 ] (L=TPE2 -BPY for 1, TPE-BPY for 2) by employing aggregation-induced emission (AIE)-active tetraphenylethylene (TPE) derivatives as sensitizers, which possessed matched energy to NdIII , prevented competitive deactivation under aggregation, even shifted the excitation window toward 600 nm by twisted intramolecular charge transfer. Furthermore, benefiting from the 4 f electron shielding effect and antenna effect, the enhanced excitation energies of the AIE-active sensitizers by structural rigidification transferred into the inert NdIII excited state through 3 LMCT, affording the first aggregation-induced phosphorescence enhancement (AIPE)-active discrete NIR-emitting lanthanide complexes. As 1 equipped with more AIE-active TPE than 2, L→Nd energy transfer efficiency in the former was higher than that in the latter under the same conditions. Consequently, the crystal of 1 exhibited one of the longest lifetimes (9.69 μs) among NdIII -based complexes containing C-H bonds.
Collapse
Affiliation(s)
- Hao Zhuo
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Dao-Bin Guan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Jia-Cun He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Hai-Bing Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China.,State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China.,Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|