1
|
Darmayanti MG, Tuck KL, Thang SH. Carbon Dioxide Capture by Emerging Innovative Polymers: Status and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403324. [PMID: 38709571 DOI: 10.1002/adma.202403324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Indexed: 05/08/2024]
Abstract
A significant amount of research has been conducted in carbon dioxide (CO2) capture, particularly over the past decade, and continues to evolve. This review presents the most recent advancements in synthetic methodologies and CO2 capture capabilities of diverse polymer-based substances, which includes the amine-based polymers, porous organic polymers, and polymeric membranes, covering publications in the last 5 years (2019-2024). It aims to assist researchers with new insights and approaches to develop innovative polymer-based materials with improved capturing CO2 capacity, efficiency, sustainability, and cost-effective, thereby addressing the current obstacles in carbon capture and storage to sooner meeting the net-zero CO2 emission target.
Collapse
Affiliation(s)
- Made Ganesh Darmayanti
- School of Chemistry, Monash University, Clayton Campus, Victoria, 3800, Australia
- Faculty of Mathematics and Natural Sciences, University of Mataram, Jalan Majapahit 62 Mataram, Nusa Tenggara Barat, 83125, Indonesia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton Campus, Victoria, 3800, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton Campus, Victoria, 3800, Australia
| |
Collapse
|
2
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
3
|
Synthesis & characterization of amino acid-based acrylamide derived amphiphilic block copolymer using a new xanthate and its influence on cell cytotoxicity & cell viability. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Li Q, Lu Z, Yang H, Cai J, Yin X, Zhao Y, Xiao L, Hou L. Photoinduced organocatalyzed controlled radical polymerization feasible over a wide range of wavelengths. Polym Chem 2022. [DOI: 10.1039/d1py01444g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We successfully synthesized a catalyst with a wide absorption range (300–1000 nm) for controlled radical polymerization of PEGMA in aqueous solution and MMA in bulk under the irradiation of white, blue, green, red, and NIR LED light, and sunlight.
Collapse
Affiliation(s)
- Qiuyu Li
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Zhen Lu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P.R. China
| | - Hongjie Yang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P.R. China
| | - Xiangyu Yin
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P.R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
5
|
Boadi FO, Sampson NS. Gradient Copolymer Prepared from Alternating Ring-Opening Metathesis of Three Monomers. Polym Chem 2021; 12:5613-5622. [PMID: 35480962 PMCID: PMC9038129 DOI: 10.1039/d1py00690h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Bicyclo[4.2.0]oct-6-ene-7-carboxamide is a simple but highly strained olefin monomer which forms an alternating copolymer with cyclohexene in the presence of N-heterocyclic carbene-ruthenium catalyst. [4.2.0] moiety with bulky substituent on C7 that chelate with the ruthenium center of the catalyst propagate more slowly than monomers that cannot chelate. Accordingly, the reactivity ratio of N-propylbicyclo[4.2.0]oct-6-ene-7-carboxamide with cyclohexene is significantly higher than that of N-(2-(2-ethoxyethoxy)ethan)-bicyclo[4.2.0]oct-6-ene-7-carboxamide with cyclohexene. A copolymerization involving the three monomers in a 1:1:2 (propyl:ethylene glycol:cyclohexene) molar ratio formed a gradient copolymer in a one-pot reaction. Surface hydrophobicity, topology, and thermal properties of the gradient copolymer were similar to those of a copolymer comprised of six microblocks prepared through multistep synthesis by alternately employing the same two bicyclo[4.2.0]oct-6-ene-7-carboxamides in each microblock. The properties of the gradient copolymer were distinct from a copolymer comprised of two larger blocks based on the same bicyclo[4.2.0]oct-6-ene-7-carboxamides.
Collapse
Affiliation(s)
- Francis O Boadi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
6
|
Guo X, Shi W, Yin H, Pan J, Wang Z, Feng A, Thang SH. Facile Synthesis of CO 2 -Responsive Nano-Objects: Batch versus Semi-Batch RAFT Copolymerization. Macromol Rapid Commun 2021; 42:e2000765. [PMID: 33904216 DOI: 10.1002/marc.202000765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Indexed: 11/11/2022]
Abstract
Precise polymer architecture and self-assembled morphological control are attractive due to their promising applications, such as drug delivery, biosensors, tissue engineering and "smart" optical systems. Herein, starting from the same hydrophilic units poly(ethylene glycol) (PEG), using CO2 -sensitive monomer N, N-diethylaminoethyl methacrylate (DEAEMA) and hydrophobic monomer benzyl methacrylate (BzMA), a series of well-defined statistical, block, and gradient copolymers is designed and synthesized with similar degree of polymerization but different monomer sequences by batch and semi-batch RAFT polymerization process and their CO2 -responsive behaviors of these nano-objects is systematically studied. The gradient copolymers are generated by using semi-batch methods with programmed monomer feed rate controlled by syringe pumps, achieving precise control over desired gradient copolymer composition distribution. In aqueous solution, the copolymers could self-assemble into various aggregates before CO2 stimulus. Upon bubbling CO2 , the gradient copolymers preferred to form nanosheet-like structures, while the block and statistical copolymers with similar molar mass could only form larger vesicles with thinner membrane thickness or disassemble. The semi-batch strategy to precisely control over the desired composition distribution of the gradient segment presents an emerging trend for the fabrication and application of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Xiaofeng Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wencheng Shi
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hang Yin
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiasheng Pan
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anchao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - San H Thang
- School of Chemistry, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| |
Collapse
|
7
|
Xiao L, Li Q, Liu Y, Fu X, Zhao Y, Cai J, Yin X, Hou L. Durable and recyclable conjugated microporous polymer mediated controlled radical polymerization under white LED light irradiation. Polym Chem 2021. [DOI: 10.1039/d1py01241j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this work, we report the first example of the use of a conjugated microporous polymer material (EI-CMP) as a heterogeneous catalyst in reversible complexation-mediated radical polymerization under white LED light irradiation.
Collapse
Affiliation(s)
- Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou 362801, P. R. China
| | - Qiuyu Li
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yabin Liu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Xiaoling Fu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Xiangyu Yin
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|