1
|
Zhang Y, Wang P, Li N, Guo C, Li S. The Effect of Topology on Block Copolymer Nanoparticles: Linear versus Star Block Copolymers in Toluene. Polymers (Basel) 2022; 14:polym14173691. [PMID: 36080766 PMCID: PMC9460934 DOI: 10.3390/polym14173691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Linear and star block copolymer (BCP) nanoparticles of (polystyrene-block-poly(4-vinylpyridine))n (PS-b-P4VP)n with arm numbers of 1, 2, 3, and 4 were prepared by two methods of polymerization-induced self-assembly (PISA) and general self-assembly of block copolymers in the low-polar organic solvent, toluene. The effect of the arm number on the size and/or morphology of the (PS-b-P4VP)n nanoassemblies synthesized by the two methods in toluene and on the polymerization kinetics was investigated in detail. Our results show that in toluene, a low-polar solvent, the topology not only affected the morphology of the BCP nanoparticles prepared by PISA, but also influenced the BCP nanoparticles synthesized through general self-assembly.
Collapse
|
2
|
Qiu X, Xue H, Xu L, Wang R, Qiu S, He Q, Bu W. Synthesis and hierarchical self-assembly of luminescent platinum( ii)-containing telechelic metallopolymers. Polym Chem 2021. [DOI: 10.1039/d1py00835h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Luminescent telechelic metallopolymers functionalized with platinum(ii) complexes can self-assemble into flowerlike micelles, and the resulting flowers can further form vesicle-like architectures in solution.
Collapse
Affiliation(s)
- Xiandeng Qiu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hua Xue
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Lin Xu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ran Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shengchao Qiu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|