1
|
Sarkar AR, Mukherjee N, Sarkar AK, Jana NR. Designing Nano-Hemin for Ferroptosis-Mediated Cell Death via Enzymatic Hemin Digestion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64628-64637. [PMID: 39552348 DOI: 10.1021/acsami.4c17763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hemin is a protoporphyrin complex of ferric ion which catalyzes H2O2 degradation and produces reactive oxygen species (ROS). This ROS generation property induces oxidative stress to hemin-exposed cells that can lead to various situations such as intracellular Fenton reaction, ferroptosis, or autophagy. Therapeutic performance of hemin is hindered due to low bioavailability of the active monomeric form with an intact ROS generation property. Here, we demonstrate a colloidal nanoparticle form of hemin (nano-hemin) with a high ROS generation property and high cell uptake property. We have shown that nano-hemin produces ROS inside a cell that upregulate heme oxygenase-1 in order to metabolize hemin. This leads to the ferroptosis-mediated cell death. Furthermore, we show that the ROS generation property of nano-hemin can be modulated to control hemin cytotoxicity for either ferroptosis or autophagy. Our findings suggest that nano-hemin can be designed with modular cytotoxicity for different therapeutic applications.
Collapse
Affiliation(s)
- Abu Raihan Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nayana Mukherjee
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
2
|
Qiu D, He F, Liu Y, Zhou Z, Yang Y, Long Z, Chen Q, Chen D, Wei S, Mao X, Zhang X, Mergny J, Monchaud D, Ju H, Zhou J. A Cost-Effective Hemin-Based Artificial Enzyme Allows for Practical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402237. [PMID: 38924304 PMCID: PMC11348135 DOI: 10.1002/advs.202402237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Nanomaterials excel in mimicking the structure and function of natural enzymes while being far more interesting in terms of structural stability, functional versatility, recyclability, and large-scale preparation. Herein, the story assembles hemin, histidine analogs, and G-quadruplex DNA in a catalytically competent supramolecular assembly referred to as assembly-activated hemin enzyme (AA-heminzyme). The catalytic properties of AA-heminzyme are investigated both in silico (by molecular docking and quantum chemical calculations) and in vitro (notably through a systematic comparison with its natural counterpart horseradish peroxidase, HRP). It is found that this artificial system is not only as efficient as HRP to oxidize various substrates (with a turnover number kcat of 115 s-1) but also more practically convenient (displaying better thermal stability, recoverability, and editability) and more economically viable, with a catalytic cost amounting to <10% of that of HRP. The strategic interest of AA-heminzyme is further demonstrated for both industrial wastewater remediation and biomarker detection (notably glutathione, for which the cost is decreased by 98% as compared to commercial kits).
Collapse
Affiliation(s)
- Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Fangni He
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Zhaoxi Zhou
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Yuqin Yang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Zhongwen Long
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Qianqian Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
- Laboratoire d'Optique et Biosciences (LOB)Ecole PolytechniqueCNRSINSERMInstitut Polytechnique de ParisPalaiseau91120France
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFCDijon21078France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| |
Collapse
|
3
|
López-Domene R, Manteca A, Rodriguez-Abetxuko A, Beloqui A, Cortajarena AL. In vitro Production of Hemin-Based Artificial Metalloenzymes. Chemistry 2024; 30:e202303254. [PMID: 38145337 DOI: 10.1002/chem.202303254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 12/26/2023]
Abstract
Developing enzyme alternatives is pivotal to improving and enabling new processes in biotechnology and industry. Artificial metalloenzymes (ArMs) are combinations of protein scaffolds with metal elements, such as metal nanoclusters or metal-containing molecules with specific catalytic properties, which can be customized. Here, we engineered an ArM based on the consensus tetratricopeptide repeat (CTPR) scaffold by introducing a unique histidine residue to coordinate the hemin cofactor. Our results show that this engineered system exhibits robust peroxidase-like catalytic activity driven by the hemin. The expression of the scaffold and subsequent coordination of hemin was achieved by recombinant expression in bulk and through in vitro transcription and translation systems in water-in-oil drops. The ability to synthesize this system in emulsio paves the way to improve its properties by means of droplet microfluidic screenings, facilitating the exploration of the protein combinatorial space to discover improved or novel catalytic activities.
Collapse
Affiliation(s)
- Rocío López-Domene
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, E-20014, Spain
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, E-20018, Spain
| | - Aitor Manteca
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, E-20014, Spain
| | - Andoni Rodriguez-Abetxuko
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, E-20018, Spain
| | - Ana Beloqui
- POLYMAT and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, E-20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, E-48009, Bilbao, Spain
| | - Aitziber L Cortajarena
- Centre for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, E-20014, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, E-48009, Bilbao, Spain
| |
Collapse
|
4
|
Barati F, Hosseini F, Vafaee R, Sabouri Z, Ghadam P, Arab SS, Shadfar N, Piroozmand F. In silico approaches to investigate enzyme immobilization: a comprehensive systematic review. Phys Chem Chem Phys 2024; 26:5744-5761. [PMID: 38294035 DOI: 10.1039/d3cp03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Enzymes are popular catalysts with many applications, especially in industry. Biocatalyst usage on a large scale is facing some limitations, such as low operational stability, low recyclability, and high enzyme cost. Enzyme immobilization is a beneficial strategy to solve these problems. Bioinformatics tools can often correctly predict immobilization outcomes, resulting in a cost-effective experimental phase with the least time consumed. This study provides an overview of in silico methods predicting immobilization processes via a comprehensive systematic review of published articles till 11 December 2022. It also mentions the strengths and weaknesses of the processes and explains the computational analyses in each method that are required for immobilization assessment. In this regard, Web of Science and Scopus databases were screened to gain relevant publications. After screening the gathered documents (n = 3873), 60 articles were selected for the review. The selected papers have applied in silico procedures including only molecular dynamics (MD) simulations (n = 20), parallel tempering Monte Carlo (PTMC) and MD simulations (n = 3), MD and docking (n = 1), density functional theory (DFT) and MD (n = 1), only docking (n = 11), metal ion binding site prediction (MIB) server and docking (n = 2), docking and DFT (n = 1), docking and analysis of enzyme surfaces (n = 1), only DFT (n = 1), only MIB server (n = 2), analysis of an enzyme structure and surface (n = 12), rational design of immobilized derivatives (RDID) software (n = 3), and dissipative particle dynamics (DPD; n = 2). In most included studies (n = 51), enzyme immobilization was investigated experimentally in addition to in silico evaluation.
Collapse
Affiliation(s)
- Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Fakhrisadat Hosseini
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Rayeheh Vafaee
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Sabouri
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Parinaz Ghadam
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Shadfar
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Firoozeh Piroozmand
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Wang C, Liu Q, Huang X, Zhuang J. Ferritin nanocages: a versatile platform for nanozyme design. J Mater Chem B 2023; 11:4153-4170. [PMID: 37158014 DOI: 10.1039/d3tb00192j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanozymes are a class of nanomaterials with enzyme-like activities and have attracted increasing attention due to their potential applications in biomedicine. However, nanozyme design incorporating the desired properties remains challenging. Natural or genetically engineered protein scaffolds, such as ferritin nanocages, have emerged as a promising platform for nanozyme design due to their unique protein structure, natural biomineralization capacity, self-assembly properties, and high biocompatibility. In this review, we highlight the intrinsic properties of ferritin nanocages, especially for nanozyme design. We also discuss the advantages of genetically engineered ferritin in the versatile design of nanozymes over natural ferritin. Additionally, we summarize the bioapplications of ferritin-based nanozymes based on their enzyme-mimicking activities. In this perspective, we mainly provide potential insights into the utilization of ferritin nanocages for nanozyme design.
Collapse
Affiliation(s)
- Chunyu Wang
- School of Medicine, Nankai University, Tianjin 300071, China.
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Protein encapsulation of nanocatalysts: A feasible approach to facilitate catalytic theranostics. Adv Drug Deliv Rev 2023; 192:114648. [PMID: 36513163 DOI: 10.1016/j.addr.2022.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Enzyme-mimicking nanocatalysts, also termed nanozymes, have attracted much attention in recent years. They are considered potential alternatives to natural enzymes due to their multiple catalytic activities and high stability. However, concerns regarding the colloidal stability, catalytic specificity, efficiency and biosafety of nanomaterials in biomedical applications still need to be addressed. Proteins are biodegradable macromolecules that exhibit superior biocompatibility and inherent bioactivities; hence, the protein modification of nanocatalysts is expected to improve their bioavailability to match clinical needs. The diversity of amino acid residues in proteins provides abundant functional groups for the conjugation or encapsulation of nanocatalysts. Moreover, protein encapsulation can not only improve the overall performance of nanocatalysts in biological systems, but also bestow materials with new features, such as targeting and retention in pathological sites. This review aims to report the recent developments and perspectives of protein-encapsulated catalysts in their functional improvements, modification methods and applications in biomedicine.
Collapse
|
7
|
Qamar M, Basharat A, Qamar SA, Bilal M, Franco M, Iqbal HM. Enzyme-loaded nanostructured materials for the degradation of environmental pollutants. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 30:100400. [DOI: 10.1016/j.coesh.2022.100400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
8
|
Li Z, Deng X, Hong X, Zhao S. Nanozyme Based on Dispersion of Hemin by Graphene Quantum Dots for Colorimetric Detection of Glutathione. Molecules 2022; 27:molecules27206779. [PMID: 36296372 PMCID: PMC9608629 DOI: 10.3390/molecules27206779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Compared with natural enzymes, nanozymes have the advantages of good catalytic performance, high stability, low cost, and can be used under extreme conditions. Preparation of highly active nanozymes through simple methods and their application in bioanalysis is highly desirable. In this work, a nanozyme based on dispersion of hemin by graphene quantum dot (GQD) is demonstrated, which enables colorimetric detection of glutathione (GSH). GQD was prepared by a one-step hydrothermal synthesis method. Hemin, the catalytic center of heme protein but with low solubility and easy aggregation that limits its catalytic activity, can be dispersed with GQD by simple sonication. The as-prepared Hemin/GQD nanocomplex had excellent peroxidase-like activity and can be applied as a nanozyme. In comparison with natural horseradish peroxidase (HRP), Hemin/GQD nanozyme exhibited a clearly reduced Michaelis–Menten constant (Km) when tetramethylbenzidine (TMB) was used as the substrate. With H2O2 being the substrate, Hemin/GQD nanozyme exhibited a higher maximum reaction rate (Vmax) than HRP. The mechanisms underlying the nanozyme activity were investigated through a free radical trapping experiment. A colorimetric platform capable of sensitive detection of GSH was developed as the proof-of-concept demonstration. The linear detection range was from 1 μM to 50 μM with a low limit of detection of 200 nM (S/N = 3). Determination of GSH in serum samples was also achieved.
Collapse
Affiliation(s)
- Zhaoshen Li
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning 530021, China
| | - Xiaochun Deng
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoping Hong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (X.H.); (S.Z.)
| | - Shengfa Zhao
- Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning 530021, China
- Correspondence: (X.H.); (S.Z.)
| |
Collapse
|
9
|
Xie P, Zhang W, Wu W, Shen Z, Wang M, Lai Y, Chen Y, Jia Z. Phenoxyl mediators improve enzymatic degradation of organic pollutants: Effect and mechanism. Int J Biol Macromol 2022; 215:606-614. [PMID: 35750102 DOI: 10.1016/j.ijbiomac.2022.06.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
A mediation strategy can effectively overcome the low reaction activity of enzymes with nonspecific substrates. In this study, we demonstrated how phenol compounds can mitigate the substrate limitation of HRP in catalytic degradation of various organic pollutants. In a classical HRP/H2O2 system, phenol and natural phenolic compounds (4-HBA & pHBA), exhibited up to over 100-fold enhancement in eliminating organic dyes and persistent antibiotics while the loading is only 2-5 wt%. A combination of molecular modelling, docking and frontier orbital energy analysis was employed to elucidate the catalytic performance and mechanism. We revealed that (1) generating phenoxyl radicals required the proximity of mediators to the HRP active centre, and (2) the subsequent efficient radical transfer to pollutants was determined by the large energy gap between the SOMO energy of phenoxyl radicals and the HOMO energy of phenols. When considering phenols as pollutants, we showed a synergistic effect on catalytic degradation of phenols, dyes, and tetracycline with a removal efficiency of 71-92 %. Overall, this work not only demonstrates that phenoxyl mediators can overcome the lower efficiency and substrate-specificity limitations of the HRP/H2O2 system but also revealed their structure-mediation relationship, implying great potential in the biodegradation of diverse pollutants and their mixtures.
Collapse
Affiliation(s)
- Peng Xie
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wang Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wugao Wu
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhuanglin Shen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Mingliang Wang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518060, China
| | - Yantao Chen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Zhongfan Jia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia..
| |
Collapse
|
10
|
Polymeric Nanocapsule Enhances the Peroxidase-like Activity of Fe3O4 Nanozyme for Removing Organic Dyes. Catalysts 2022. [DOI: 10.3390/catal12060614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peroxidase-like nanozymes are nanoscale materials that can closely mimic the activity of natural peroxidase for a range of oxidation reactions. Surface coating with polymer nanogels has been considered to prevent the aggregation of nanozymes. For a long time, the understanding of polymer coating has been largely limited to its stabilization effect on the nanozyme in aqueous media, while little is known about how polymer coating plays a role in interaction with substrates and primary oxidants to dictate the catalytic process. This work reported a facile sequential modification of Fe3O4 nanoparticles to polyacrylamide coated nanozymes, and as low as 112 mg/L samples with only 5 mg/L Fe3O4 could nearly quantitatively (99%) remove a library of organic dyes with either H2O2 or Na2S2O8 as primary oxidants. The catalytic results and molecular simulation provide both experimental and computational evidence that the hydrogen bonding interaction between the reactant and nanozymes is key for the high local concentration hence catalytic efficiency. We envision that this work, for the first time, provides some insights into the role of polymer coating in enhancing the catalytic activity of nanozyme apart from the well-known water dispersity effect.
Collapse
|
11
|
Patenaude BF, Berda EB, Pazicni S. Probing secondary coordination sphere interactions within porphyrin-cored polymer nanoparticles. Polym Chem 2022. [DOI: 10.1039/d1py01005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A suite of zinc porphyrin-cored polymeric nanoparticles were synthesized and characterized to study secondary coordination sphere interactions. We show that with proper design these materials catalyze the reaction of cyanide with N,N-dimethylformamide.
Collapse
Affiliation(s)
- Brian F. Patenaude
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, USA
| | - Erik B. Berda
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, USA
- Materials Science Program, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, USA
| | - Samuel Pazicni
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
12
|
Sarkar AR, Pal S, Sarkar AK, Jana NR. Hemin-based cell therapy via nanoparticle-assisted uptake, intracellular reactive oxygen species generation and autophagy induction. NEW J CHEM 2022. [DOI: 10.1039/d2nj02966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A hemin-based colloidal nanoparticle is designed that offers an iron-based Fenton reaction inside the cell and induces cellular autophagy via oxidative stress.
Collapse
Affiliation(s)
- Abu Raihan Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| | - Suman Pal
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| | - Nikhil R. Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| |
Collapse
|
13
|
Zhang DX, Wang R, Cao H, Luo J, Jing TF, Li BX, Mu W, Liu F, Hou Y. Emamectin benzoate nanogel suspension constructed from poly(vinyl alcohol)-valine derivatives and lignosulfonate enhanced insecticidal efficacy. Colloids Surf B Biointerfaces 2021; 209:112166. [PMID: 34739877 DOI: 10.1016/j.colsurfb.2021.112166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/29/2022]
Abstract
To reduce the negative impact of nanopesticide carriers of on the environment, a greener nanodelivery system is necessary. Nanogels are nontoxic and degradable carriers, however, the potential of nanogels for delivering pesticides has not been proven. In this study, poly(vinyl alcohol)-valine, an ecofriendly polymer, was synthesized and used to fabricate emamectin benzoate nanogel suspension (EB NS). The nanoformulation showed favorable stability at low temperature, high temperature or one year storage, and in water with different hardnesses. The retention of the EB NS solution on leaves was higher than that of an EB emulsifiable concentrate (EC) by approximately 9% at a concentration of 10 mg L-1. The half-life of EB nanogels under Ultra Violet irradiation was prolonged by 3.3-fold. Moreover, the bioactivity of the EB NS against Plutella xylostella was higher than that of the EB EC. These advantages resulted in a relatively long duration of pest control. The response of nanogels to laccase, a digestive enzyme in the digestive tract of lepidopteran pests, enables pesticide release on demand. Nanogels have the advantages of being ecofriendly carriers, exhibiting higher utilization, and prolonged pest control periods, and they have a brilliant future in pesticide delivery.
Collapse
Affiliation(s)
- Da-Xia Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Rui Wang
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Haichao Cao
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jian Luo
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Tong-Fang Jing
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Bei-Xing Li
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Mu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Feng Liu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
14
|
Liu M, Zhu Y, Jin D, Li L, Cheng J, Liu Y. Hemin-Caged Ferritin Acting as a Peroxidase-like Nanozyme for the Selective Detection of Tumor Cells. Inorg Chem 2021; 60:14515-14519. [PMID: 34505770 DOI: 10.1021/acs.inorgchem.1c01863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanozyme is a class of artificial materials that possess enzyme-like activities and can overcome limitations of natural enzymes. However, controllability of the active sites, uniformity of the particles, and dispersion in the physiological media are still challenging for nanomaterial-based nanozymes. In this work, a protein-based nanozyme has been constructed by the encapsulation of hemin into the nanocavity of a recombinant human heavy chain ferritin (Ftn), generating a monodispersed peroxidase-mimetic nanozyme (hemin@Ftn). Hemin@Ftn possesses high peroxidase catalytic activity and high tolerance to the harsh environmental conditions, such as high temperature and chemical denaturant. Remarkably, hemin@Ftn can act as a colorimetric probe for the detection of tumor cells because it can selectively catalyze reactions in tumor cells. This protein-based nanozyme bridges the gap between natural enzymes and nanomaterial-based nanozymes by the incorporation of a catalytically active prosthetic group into a highly stable Ftn.
Collapse
Affiliation(s)
- Manman Liu
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| | - Yang Zhu
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| | - Duo Jin
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| | - Li Li
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjie Cheng
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Bilal M, Qamar SA, Ashraf SS, Rodríguez-Couto S, Iqbal HMN. Robust nanocarriers to engineer nanobiocatalysts for bioprocessing applications. Adv Colloid Interface Sci 2021; 293:102438. [PMID: 34023567 DOI: 10.1016/j.cis.2021.102438] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
The synergistic integration of bio-catalysis engineering with nanostructured materials, as unique multifunctional carrier matrices, has emerged as a new interface of nanobiocatalysis (NBC). NBC is an emerging innovation that offers significant considerations to expand the designing and fabrication of robust catalysts at the nanoscale with improved catalytic characteristics for multipurpose bioprocessing applications. In addition, nanostructured materials with unique structural, physical, chemical, and functional entities have manifested significant contributions in mimicking the enzyme microenvironment. A fine-tuned enzyme microenvironment with an added-value of NBC offers chemo- regio- and stereo- selectivities and specificities. Furthermore, NBC is growing rapidly and will become a powerful norm in bio-catalysis with much controlled features, such as selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, improved mass transfer efficiency, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness. Considering the above critics and unique structural, physicochemical, and functional attributes, herein, we present and discuss advances in NBC and its bioprocessing applications in different fields. Briefly, this review is focused on four parts, i.e., (1) NBC as a drive towards applied nanobiocatalysts (as an introduction with opportunities), (2) promising nanocarriers to develop nanobiocatalysts, (3) applications in the fields of biotransformation, biofuel production, carbohydrate hydrolysis, bio-/nanosensing, detergent formulations, and extraction and purification of value-added compounds, and (4) current challenges, concluding remarks, and future trends.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|