1
|
Shi Y, Derasp JS, Guzman SM, Patrick BO, Hein JE. Halide Salts Alleviate TMSOK Inhibition in Suzuki-Miyaura Cross-Couplings. ACS Catal 2024; 14:12671-12680. [PMID: 39169912 PMCID: PMC11334106 DOI: 10.1021/acscatal.4c02407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
The Suzuki-Miyaura cross-coupling (SMC) remains one of the most widely used transformations available to chemists. Recently, robust new conditions achieving rapid reactivity under homogeneous aprotic conditions enabled by the use of potassium trimethylsilanolate (TMSOK) as a base were reported. However, the strong inhibitory effect of TMSOK restricts the generality of such conditions. Moreover, the basic nature of TMSOK impedes the use of protic heterocycles as substrates, as these latter anionic species are even more potent catalyst inhibitors. Herein, we report a thorough mechanistic study of these novel SMC conditions. Halide salt additives were found to provide a dramatic rate acceleration and mitigate the inhibitory effect of TMSOK. NMR experiments revealed that this is largely achieved by impacting the unexpected formation of inactive [LnPd(Ar)(μ-OH)]2, favoring the formation of active LnPd(Ar)(X) instead. These findings enabled an impressive substrate scope even at low catalyst loadings (0.1 mol %). Finally, halide additives were observed to enable the use of protic heterocyclic substrates, which could otherwise completely inhibit reactivity.
Collapse
Affiliation(s)
- Yao Shi
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Joshua S. Derasp
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sara M. Guzman
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O. Patrick
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jason E. Hein
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
- Acceleration
Consortium, University of Toronto, Toronto, Ontario M5G 3H6, Canada
| |
Collapse
|
2
|
Zhang T, Chen Z, Zhang W, Wang L, Yu G. Recent Progress of Fluorinated Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403961. [PMID: 38830614 DOI: 10.1002/adma.202403961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.
Collapse
Affiliation(s)
- Tianhao Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Shi Y, Derasp JS, Maschmeyer T, Hein JE. Phase transfer catalysts shift the pathway to transmetalation in biphasic Suzuki-Miyaura cross-couplings. Nat Commun 2024; 15:5436. [PMID: 38937470 PMCID: PMC11211432 DOI: 10.1038/s41467-024-49681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The Suzuki-Miyaura coupling is a widely used C-C bond forming reaction. Numerous mechanistic studies have enabled the use of low catalyst loadings and broad functional group tolerance. However, the dominant mode of transmetalation remains controversial and likely depends on the conditions employed. Herein we detail a mechanistic study of the palladium-catalyzed Suzuki-Miyaura coupling under biphasic conditions. The use of phase transfer catalysts results in a remarkable 12-fold rate enhancement in the targeted system. A shift from an oxo-palladium based transmetalation to a boronate-based pathway lies at the root of this activity. Furthermore, a study of the impact of different water loadings reveals reducing the proportion of the aqueous phase increases the reaction rate, contrary to reaction conditions typically employed in the literature. The importance of these findings is highlighted by achieving an exceptionally broad substrate scope with benzylic electrophiles using a 10-fold reduction in catalyst loading relative to literature precedent.
Collapse
Affiliation(s)
- Yao Shi
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Joshua S Derasp
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| | - Tristan Maschmeyer
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Jason E Hein
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Department of Chemistry, University of Bergen, Bergen, Norway.
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Zhang JJ, Liu K, Xiao Y, Yu X, Huang L, Gao HJ, Ma J, Feng X. Precision Graphene Nanoribbon Heterojunctions by Chain-Growth Polymerization. Angew Chem Int Ed Engl 2023; 62:e202310880. [PMID: 37594477 DOI: 10.1002/anie.202310880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Graphene nanoribbons (GNRs) are considered promising candidates for next-generation nanoelectronics. In particular, GNR heterojunctions have received considerable attention due to their exotic topological electronic phases at the heterointerface. However, strategies for their precision synthesis remain at a nascent stage. Here, we report a novel chain-growth polymerization strategy that allows for constructing GNR heterojunction with N=9 armchair and chevron GNRs segments (9-AGNR/cGNR). The synthesis involves a controlled Suzuki-Miyaura catalyst-transfer polymerization (SCTP) between 2-(6'-bromo-4,4''-ditetradecyl-[1,1':2',1''-terphenyl]-3'-yl) boronic ester (M1) and 2-(7-bromo-9,12-diphenyl-10,11-bis(4-tetradecylphenyl)-triphenylene-2-yl) boronic ester (M2), followed by the Scholl reaction of the obtained block copolymer (poly-M1/M2) with controlled Mn (18 kDa) and narrow Đ (1.45). NMR and SEC analysis of poly-M1/M2 confirm the successful block copolymerization. The solution-mediated cyclodehydrogenation of poly-M1/M2 toward 9-AGNR/cGNR is unambiguously validated by FT-IR, Raman, and UV/Vis spectroscopies. Moreover, we also demonstrate the on-surface formation of pristine 9-AGNR/cGNR from the unsubstituted copolymer precursor, which is unambiguously characterized by scanning tunneling microscopy (STM).
Collapse
Affiliation(s)
- Jin-Jiang Zhang
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Kun Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Yao Xiao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiuling Yu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Li Huang
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Hong-Jun Gao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
5
|
Ye S, Lotocki V, Xu H, Seferos DS. Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chem Soc Rev 2022; 51:6442-6474. [PMID: 35843215 DOI: 10.1039/d2cs00139j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-membered aromatic rings containing Group 16 elements (O, S, Se, and Te), also referred as chalcogenophenes, are ubiquitous building blocks for π-conjugated polymers (CPs). Among these, polythiophenes have been established as a model system to study the interplay between molecular structure, solid-state organization, and electronic performance. The judicious substitution of alternative heteroatoms into polythiophenes is a promising strategy for tuning their properties and improving the performance of derived organic electronic devices, thus leading to the recent abundance of CPs containing furan, selenophene, and tellurophene. In this review, we first discuss the current status of Kumada, Negishi, Murahashi, Suzuki-Miyaura, and direct arylation polymerizations, representing the best routes to access well-defined chalcogenophene-containing homopolymers and copolymers. The self-assembly, optical, solid-state, and electronic properties of these polymers and their influence on device performance are then summarized. In addition, we highlight post-polymerization modifications as effective methods to transform polychalcogenophene backbones or side chains in ways that are unobtainable by direct polymerization. Finally, the major challenges and future outlook in this field are presented.
Collapse
Affiliation(s)
- Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Victor Lotocki
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Hao Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
6
|
Ahluwalia G, Subbiah J, Mitchell VD, Saker Neto N, Jones DJ. One-Pot Synthesis of Fully Conjugated Amphiphilic Block Copolymers Using Asymmetrically Functionalized Push–Pull Monomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gagandeep Ahluwalia
- School of Chemistry, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Jegadesan Subbiah
- School of Chemistry, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Valerie D. Mitchell
- School of Chemistry, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Nicolau Saker Neto
- School of Chemistry, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - David J. Jones
- School of Chemistry, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Kawakami M, Schulz KHG, Varni A, Tormena CF, Gil RR, Noonan K. Statistical Copolymers of Thiophene-3-Carboxylates and Selenophene-3-Carboxylates; 77Se NMR as a Tool to Examine Copolymer Sequence in Selenophene-Based Conjugated Polymers. Polym Chem 2022. [DOI: 10.1039/d2py00777k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we demonstrate that homopolymerization and statistical copolymerization of 2-ethylhexyl thiophene-3-carboxylate and 2-ethylhexyl selenophene-3-carboxylate monomers is possible via Suzuki-Miyaura cross-coupling. A commercially available palladium catalyst ([1,3-bis(2,6-di-3-pentylphenyl)imidazol-2-ylidene](3-chloropyridyl)dichloropalladium(II) or PEPPSI-IPent) was employed...
Collapse
|