1
|
Zhang J, Sun J, Zhou X, Ou R, Sun L, Guo C, Fan Q, Gao Z. Ultra-strong and solvent-resistant lignin-based non-isocyanate polyurethane adhesives: One-pot strategy toward versatile bonding. Int J Biol Macromol 2024; 287:138622. [PMID: 39672421 DOI: 10.1016/j.ijbiomac.2024.138622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Isocyanate-free polyurethane adhesives have attracted considerable attention as a promising environmentally friendly alternative. However, their progress has been hindered by insufficient bonding performance and weak solvent resistance, as well as the laborious synthesis processes involved. Herein, we successfully synthesized a high-performance lignin-based non-isocyanate adhesives (LNIPUs-G) through a one-pot strategy that combines the polycondensation of carbonate groups with polyether amines and aldehyde-amine chemistry. The former aspect circumvents the limitations associated with cyclic carbonate polyaddition while providing a molecular composition containing both rigid and flexible segments along with a high-density polar groups. Concurrently, the rapid hyperbranching process in the latter aspect significantly contributes to achieving a robust crosslinked network. As a result, the LNIPUs-G demonstrates exceptional resistance to boiling water with bond strengths of up to 1.32 MPa when applied to plywood, surpassing previously reported bio-based adhesives. Moreover, the adhesive exhibits remarkable versatility across a wide range of substrates including steel, iron, copper, carbon fiber reinforced composites, ceramics, aluminum, wood, and glass. Additionally, the adhesive has excellent resistance to an extensive range of organic solvents. Life cycle assessment (LCA) results demonstrate that the high-performance and cost-effective LNIPUs-G is expected to disrupt the dominance of bulk formaldehyde- and isocyanate-based adhesives industry.
Collapse
Affiliation(s)
- Jintao Zhang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jin Sun
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiaohong Zhou
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Rongxian Ou
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China; Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Lichao Sun
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Chuigen Guo
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China; Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Qi Fan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Zhenzhong Gao
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, Guangdong, China
| |
Collapse
|
2
|
Villa R, Ruiz FJ, Velasco F, Nieto S, Porcar R, Garcia-Verdugo E, Lozano P. A Green Chemo-Enzymatic Approach for CO 2 Capture and Transformation into Bis(cyclic carbonate) Esters in Solvent-Free Media. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:15033-15043. [PMID: 39421635 PMCID: PMC11481583 DOI: 10.1021/acssuschemeng.4c04102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
A sustainable approach for CO2 capture and chemo-enzymatic transformation into bis(cyclic carbonate) esters from CO2, glycidol, and organic anhydrides under solvent-free conditions has been demonstrated. The chemo-enzymatic process is based on two consecutive catalytic steps, which can be executed through separated operations or within a one-pot combo system, taking advantage of the synergic effects that emerge from integrating ionic liquid (IL) technologies and biocatalysts. In a first step, lipase-catalyzed transesterification and esterification reactions of different diacyl donors (e.g., glutaric anhydride, succinic anhydride, dimethyl succinate, etc.) with glycidol in solvent-free under mild reaction conditions (70 °C, 6 h) produce the corresponding diglycidyl ester derivatives in up to 41% yield. By a second step, the synthesis of bis(cyclic carbonate) esters was carried out as a result of the cycloaddition reaction of CO2 (from an exhausted gas source, 15% CO2 purity) on these diglycidyl esters, catalyzed by the covalently attached 1-decyl-2-methylimidazolium IL (supported ionic liquid-like phase, SILLP), in solvent-free condition, leading up to 65% yield after 8 h at 45 °C and 1 MPa CO2 pressure. Both key elements of the reaction system (biocatalyst and SILLP) were successfully recovered and reused for at least 5 operational cycles. Finally, different metrics have been applied to assess the greenness of the solvent-free chemo-enzymatic synthesis of bis(cyclic carbonate) esters here reported.
Collapse
Affiliation(s)
- Rocio Villa
- Departamento
de Bioquimica y Biologia Molecular B e Inmunologia. Facultad de Quimica, Universidad de Murcia, E-30100 Murcia, Spain
| | - Francisco J. Ruiz
- Departamento
de Bioquimica y Biologia Molecular B e Inmunologia. Facultad de Quimica, Universidad de Murcia, E-30100 Murcia, Spain
| | - Francisco Velasco
- Departamento
de Bioquimica y Biologia Molecular B e Inmunologia. Facultad de Quimica, Universidad de Murcia, E-30100 Murcia, Spain
| | - Susana Nieto
- Departamento
de Bioquimica y Biologia Molecular B e Inmunologia. Facultad de Quimica, Universidad de Murcia, E-30100 Murcia, Spain
| | - Raul Porcar
- Departamento
de Quimica Organica e Inorganica, Universidad
Jaime I, E-12071 Castellon, Spain
- Departamento
de Química Orgánica y Bio-orgánica, Facultad
de Ciencias, Universidad Nacional de Educación
a Distancia, UNED, Avda. Esparta, 28232 Las Rozas, Madrid, Spain
| | - Eduardo Garcia-Verdugo
- Departamento
de Quimica Organica e Inorganica, Universidad
Jaime I, E-12071 Castellon, Spain
| | - Pedro Lozano
- Departamento
de Bioquimica y Biologia Molecular B e Inmunologia. Facultad de Quimica, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
3
|
Oladzadabbasabadi N, Abraham B, Ghasemlou M, Ivanova EP, Adhikari B. Green synthesis of non-isocyanate hydroxyurethane and its hybridization with carboxymethyl cellulose to produce films. Int J Biol Macromol 2024; 276:133617. [PMID: 38960219 DOI: 10.1016/j.ijbiomac.2024.133617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Non-isocyanate polyurethanes (NIPUs) have attracted increasing attention as a sustainable alternative to conventional isocyanate-based polyurethanes. This study synthesized non-isocyanate hydroxyurethanes (NIHUs) through an addition reaction between propylene carbonate (PC) and 1,2-ethylenediamine (EDA). The resulting NIHU was then hybridized with carboxymethyl cellulose (CMC) to investigate its hybridization potential. Structural analysis through FTIR, NMR, and XRD confirmed the crystalline nature of NIHU, featuring urethane bonds and abundant hydroxyl groups. It was found that NIHU and CMC interacted by forming hydrogen bonds between hydroxyl groups of NIHU and carboxyl groups of CMC, resulting in a dense CMC/NIHU hybrid structure. NMR and XRD analyses revealed changes in the hybrids' chain mobility, the Young's modulus of the hybrid with 30 % NIHU content decreased from 1627 MPa to 502 MPa relative to CMC, and the elongation at break increased from 4.44 % to 17.2 %. Increasing the concentration of NIHU in CMC reduced the hydrophobicity, in terms of water contact angle, from 70° to 41.7°. The simplicity of the synthesis method for NIHU, coupled with the desirable structure, strength, and balanced flexibility of CMC/NIHU hybrids, is expected to facilitate the production of NIHU-rich hybrids and increase their application in packaging.
Collapse
Affiliation(s)
| | - Billu Abraham
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
4
|
Ciastowicz Ż, Pamuła R, Białowiec A. Utilization of Plant Oils for Sustainable Polyurethane Adhesives: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1738. [PMID: 38673094 PMCID: PMC11050924 DOI: 10.3390/ma17081738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
The utilization of plant oils as a renewable resource for the production of polyurethane adhesives presents a promising way to improve sustainability and reduce environmental impact. This review explores the potential of various vegetable oils, including waste oils, in the synthesis of polyurethanes as an alternative to conventional petroleum-based raw materials. The investigation highlights the environmental challenges associated with conventional polyurethane production and highlights the benefits of switching to bio-renewable oils. By examining the feasibility and potential applications of vegetable oil-based polyurethanes, this study emphasizes the importance of further research and development in this area to realize the full potential of sustainable polyurethane adhesives. Further research and development in this area are key to overcoming the challenges and realizing the full potential of plant-oil-based polyurethanes in various industrial applications.
Collapse
Affiliation(s)
- Żaneta Ciastowicz
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland;
- Selena Industrial Technologies Sp. z o.o., Pieszycka 3, 58-200 Dzierżoniów, Poland;
| | - Renata Pamuła
- Selena Industrial Technologies Sp. z o.o., Pieszycka 3, 58-200 Dzierżoniów, Poland;
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland;
| |
Collapse
|
5
|
Donadini R, Boaretti C, Scopel L, Lorenzetti A, Modesti M. Deamination of Polyols from the Glycolysis of Polyurethane. Chemistry 2024; 30:e202301919. [PMID: 37844012 DOI: 10.1002/chem.202301919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Methylenedianiline (MDA) is a secondary, undesired, product of the glycolysis process of polyurethane (PU) scraps due to hydrolysis and pyrolysis side reactions. As an aromatic and carcinogen amine, MDA poses different problems in handling, transporting, and labelling recycled polyols derived from glycolysis, hindering the closure of PU recycling loop. Aiming to provide a solution to this issue, in this work different deaminating agents (DAs) were investigated with the purpose of analyzing their reactivity with MDA. A first part of the study was devoted to the analysis of MDA formation as a function of reaction time and catalyst concentration (potassium acetate) during glycolysis. It was observed that the amount of MDA increases almost linearly with the extent of PU depolymerization and catalyst content. Among the DAs analyzed 2-ethylhexyl glycidyl ether (2-EHGE), and acetic anhydride (Ac2 O) showed interesting performance, which allowed MDA content to be diminished below the limit for labelling prescription in 30 minutes. PU rigid foams were, therefore, synthesized from the corresponding recycled products and characterized in terms of thermal and mechanical performance. Ac2 O-deaminated polyols led to structurally unstable foams with poor compressive strength, while 2-EHGE-deaminated products allowed the production of foams with improved mechanical performance and unaltered thermal conductivity.
Collapse
Affiliation(s)
- Riccardo Donadini
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova, 35131, Italy
| | - Carlo Boaretti
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova, 35131, Italy
| | - Luca Scopel
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova, 35131, Italy
| | - Alessandra Lorenzetti
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova, 35131, Italy
| | - Michele Modesti
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova, 35131, Italy
| |
Collapse
|
6
|
Hebda E, Ozimek J, Szołdrowska K, Pielichowski K. Synthesis of Bis(cyclic carbonates) from Epoxy Resin under Microwave Irradiation: The Structural Analysis and Evaluation of Thermal Properties. Molecules 2024; 29:250. [PMID: 38202833 PMCID: PMC10781095 DOI: 10.3390/molecules29010250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
This article describes the use of microwave irradiation in the synthesis of bis(cyclo carbonate) compounds (BCCs) in bulk (without solvent) from carbon dioxide capture using an epoxidized compound-a commercial epoxy resin-and compares this process to the conventional method. CO2 cycloaddition to epoxides is an ecological and efficient method for the formation of bis(cyclic carbonates). Moreover, the introduction of gas into the reaction mixture was carried out at atmospheric pressure with a controlled flow rate, which is advantageous from an economic point of view. Progressive structural changes and the presence of characteristic chemical groups were monitored using attenuated total reflectance infrared spectroscopy with Fourier transform. The obtained crude products were purified to obtain three fractions, which were subjected to detailed structural analysis using FT-IR and 13CNMR. The formation of the main product with two cyclic carbonates was confirmed. The presence of monomers, dimers and trimers in individual fractions as well as their thermal stability were determined, and the molecular masses in individual fractions were determined using gel permeation chromatography (GPC).
Collapse
Affiliation(s)
- Edyta Hebda
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland; (J.O.); (K.S.)
| | | | | | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland; (J.O.); (K.S.)
| |
Collapse
|
7
|
Mangal M, H S, Bose S, Banerjee T. Innovations in applications and prospects of non-isocyanate polyurethane bioplastics. Biopolymers 2023; 114:e23568. [PMID: 37846654 DOI: 10.1002/bip.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.
Collapse
Affiliation(s)
- Mangal Mangal
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Supriya H
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Tamal Banerjee
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
8
|
Li G, Zhou X, Wang Z. Construction of Hierarchical Porous Polycyanurate Networks with Cobaltoporphyrin for CO 2 Adsorption and Efficient Conversion to Cyclic Di- and Tri-Carbonates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gen Li
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- School of Materials Science and Engineering, Hunan University of Science and Technology, Taoyuan Street, Xiangtan 411201, China
| | - Xue Zhou
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhonggang Wang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Kasprzyk P, Głowińska E, Datta J. Structure and properties comparison of poly(ether-urethane)s based on nonpetrochemical and petrochemical polyols obtained by solvent free two-step method. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Abstract
This review examines recent strategies, challenges, and future opportunities in preparing high-performance polymeric materials from lignin and its derivable compounds.
Collapse
Affiliation(s)
- Garrett F. Bass
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
- Department of Materials Science and Engineering
| |
Collapse
|