1
|
Liu Q, Li H, Zhang Y, Chen W, Yu S, Chen Y. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117406. [PMID: 37839529 DOI: 10.1016/j.envres.2023.117406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
2
|
Qiao X, Xiong Z, Wang Y, Wang R, Zhang Z, Qiu S. Double shelled titanium dioxide@mesoporous organosilica nanotube as an amphiphilic photoactive nanoreactor for efficient photocatalytic oxidation of styrene. J Colloid Interface Sci 2023; 651:235-242. [PMID: 37542898 DOI: 10.1016/j.jcis.2023.07.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/12/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
In this work, we have proposed a strategy to fabricate double-shell nanotubes as amphiphilic photoactive nanoreactors (HTTBPC) through the ordered hybridization of mesoporous organosilicon (PMO) and titanium dioxide (TiO2) nanotubes. Unlike the previous rough composite, the heterogeneous structure established between cobalt-porphyrin functionalized PMO and conventional TiO2 has a staggered matching band gap, which makes it have excellent light harvesting and high carrier separation ability. This is still unexplored. Interestingly, the prepared photocatalysts exhibited superior activity (99%) and benzaldehyde selectivity (94%) in the oxidation of styrene in water at room temperature, which was 3.8 and 2.8 times higher than that of TiO2 nanotubes and PMO functionalized with cobalt porphyrin, respectively. It was demonstrated that the strong interaction between cobalt porphyrin PMO and TiO2 improved the separation of photogenerated carriers and the amphiphilic properties of mesoporous organosilica boosted the adsorption of substrate molecules in water, contributing to the significantly enhanced photocatalytic activity. This work provides a design of high-performance photocatalysts for alkene oxidation under green conditions.
Collapse
Affiliation(s)
- Xiaoyun Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zeshan Xiong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yi Wang
- Anhui Xiangsheng New Material Co., LTD, Room 208, Integrated Service Center, Coal Chemical Road, Pingwei Town, Panji District, Huainan City, Anhui Province 232089, China
| | - Runwei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zongtao Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Wu W, Hu Z, Shi C, Xu R, Zhao Y, Ding Y. Construction of CdTe@γ-CD@RBD nanoprobe for Fe 3+-sensing based on FRET mechanism in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122645. [PMID: 37011440 DOI: 10.1016/j.saa.2023.122645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
A Fe3+ optical sensor (CdTe@γ-CD@RBD) has been developed by using gamma-cyclodextrin (γ-CD) as a bridge to link CdTe quantum dots (QDs) and a Rhodamine B derivative (RBD). The RBD molecule can enter the cavity of the γ-CD anchored onto the surfaces of the QDs. In the presence of Fe3+, the fluorescence resonance energy transfer (FRET) process from QDs to RBD will be initiated, rendering the nanoprobe to display a response to Fe3+. The degree of fluorescence quenching presented a satisfactory linearity between 10 and 60 μΜ with the incremental concentrations of Fe3+, and the calculated limit of detection was 2.51 μΜ. Through sample pretreatment procedures, the probe has been used in the determination of Fe3+ in human serum. The average recoveries in the spiking levels are ranged from 98.60 % to 107.20 % with a relative standard deviation of around 1.43 %-2.96 %. This finding leads to a method for fluorescent detection of Fe3+ with high sensitivity and exceptional selectivity. We believe that this study can give a new insight into the rational design and application of FRET-based nanoprobes.
Collapse
Affiliation(s)
- Wenlu Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Zhongfei Hu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Cai Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Ruoqian Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Yiming Zhao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China
| | - Yujie Ding
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
4
|
Lone IA, Beig SUR, Kumar R, Shah SA. Porphyrin-based conjugated microporous adsorbent material for the efficient remediation of hexavalent chromium from the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81055-81072. [PMID: 37314559 DOI: 10.1007/s11356-023-28014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
The encapsulation and eradication of anions from water have received a lot of scrutinize and are extremely important for virtuous production and environmental treatment. To prepare extremely efficient adsorbents, a highly functionalized and conjugated microporous porphyrin-based adsorbent material (Co-4MPP) was synthesized using the Alder Longo method. Co-4MPP featured a hierarchical microporous and mesoporous layered structure containing nitrogen and oxygen-based functional groups with a specific surface area of 685.209 m2/g and a pore volume of 0.495 cm3/g. Co-4MPP demonstrated a greater Cr (VI) adsorption empathy than the pristine porphyrin-based material did. The effects of various parameters such as pH, dose, time, and temperature were explored on the Cr (VI) adsorption by Co-4MPP. The pseudo-second-order model and the Cr (VI) adsorption kinetics were in agreement (R2 = 0.999). The Langmuir isotherm model matched the Cr (VI) adsorption isotherm, demonstrating the optimum Cr (VI) adsorption capacities: 291.09, 307.42, and 339.17 mg/g at 298K, 312K, and 320K, correspondingly, with remediation effectiveness of 96.88%. The model evaluation further revealed that Cr (VI) adsorption mechanism on Co-4MPP was endothermic, spontaneous, and entropy-rising. The detailed discussion of the adsorption mechanism suggested that it could be a reduction, chelation, and electrostatic interaction, in which the protonated nitrogen and oxygen-containing functional groups on the porphyrin ring interacted with Cr (VI) anions to form a stable complex, thus remediating Cr (VI) anions efficiently. Moreover, Co-4MPP demonstrated strong reusability, maintaining 70% of its Cr (VI) elimination rate after four consecutive adsorptions.
Collapse
Affiliation(s)
- Ishfaq Ahmad Lone
- Department of Chemistry, National Institute of Technology Srinagar, Hazratbal, J&K, 190006, India
| | - Sajad Ur Rehman Beig
- Department of Chemistry, National Institute of Technology Srinagar, Hazratbal, J&K, 190006, India
| | - Ravi Kumar
- Department of Chemistry, National Institute of Technology Srinagar, Hazratbal, J&K, 190006, India.
| | - Shakeel A Shah
- Department of Chemistry, National Institute of Technology Srinagar, Hazratbal, J&K, 190006, India
| |
Collapse
|
5
|
Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
6
|
A novel magnetic loading porous liquid absorbent for removal of Cu(II) and Pb(II) from the aqueous solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Mohamed MG, Elsayed MH, Ye Y, Samy MM, Hassan AE, Mansoure TH, Wen Z, Chou HH, Chen KH, Kuo SW. Construction of Porous Organic/Inorganic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxane for Energy Storage and Hydrogen Production from Water. Polymers (Basel) 2022; 15:polym15010182. [PMID: 36616530 PMCID: PMC9824186 DOI: 10.3390/polym15010182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In this study, we used effective and one-pot Heck coupling reactions under moderate reaction conditions to construct two new hybrid porous polymers (named OVS-P-TPA and OVS-P-F HPPs) with high yield, based on silsesquioxane cage nanoparticles through the reaction of octavinylsilsesquioxane (OVS) with different brominated pyrene (P-Br4), triphenylamine (TPA-Br3), and fluorene (F-Br2) as co-monomer units. The successful syntheses of both OVS-HPPs were tested using various instruments, such as X-ray photoelectron (XPS), solid-state 13C NMR, and Fourier transform infrared spectroscopy (FTIR) analyses. All spectroscopic data confirmed the successful incorporation and linkage of P, TPA, and F units into the POSS cage in order to form porous OVS-HPP materials. In addition, the thermogravimetric analysis (TGA) and N2 adsorption analyses revealed the thermal stabilities of OVS-P-F HPP (Td10 = 444 °C; char yield: 79 wt%), with a significant specific surface area of 375 m2 g-1 and a large pore volume of 0.69 cm3 g-1. According to electrochemical three-electrode performance, the OVS-P-F HPP precursor displayed superior capacitances of 292 F g-1 with a capacity retention of 99.8% compared to OVS-P-TPA HPP material. Interestingly, the OVS-P-TPA HPP showed a promising HER value of 701.9 µmol g-1 h-1, which is more than 12 times higher than that of OVS-P-F HPP (56.6 µmol g-1 h-1), based on photocatalytic experimental results.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
- Correspondence: (M.G.M.); (S.-W.K.)
| | - Mohamed Hammad Elsayed
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Yunsheng Ye
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Maha Mohamed Samy
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Ahmed E. Hassan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuei-Hsien Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.G.M.); (S.-W.K.)
| |
Collapse
|
8
|
Shakeel A, Rizwan K, Farooq U, Iqbal S, Iqbal T, Awwad NS, Ibrahium HA. Polymer based nanocomposites: A strategic tool for detection of toxic pollutants in environmental matrices. CHEMOSPHERE 2022; 303:134923. [PMID: 35568211 DOI: 10.1016/j.chemosphere.2022.134923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
A large fraction of population is suffering from waterborne diseases due to the contaminated drinking water. Both anthropogenic and natural sources are responsible for water contamination. Revolution in industrial and agriculture sectors along with a huge increase in human population has brought more amount of wastes like heavy metals, pesticides and antibiotics. These toxins are very harmful for human health, therefore, it is necessary to sense their presence in environment. Conventional strategies face various problems in detection and quantification of these pollutants such as expensive equipment and requirement of high maintenance with limited portability. Recently, nanostructured devices have been developed to detect environmental pollutants. Polymeric nanocomposites have been found robust, cost effective, highly efficient and accurate for sensing various environmental pollutants and this is due to their porous framework, multi-functionalities, redox properties, great conductivity, catalytic features, facile operation at room temperature and large surface area. Synergistic effects between polymeric matrix and nanomaterials are responsible for improved sensing features and environmental adaptability. This review focuses on the recent advancement in polymeric nanocomposites for sensing heavy metals, pesticides and antibiotics. The advantages, disadvantages, operating conditions and future perspectives of polymeric nanocomposites for sensing toxic pollutants have also been discussed.
Collapse
Affiliation(s)
- Ahmad Shakeel
- Laboratory of Process Engineering, NeptunLab, Department of Microsystems Engineering (IMTEK), Albert Ludwig University of Freiburg, Freiburg, 79110, Germany; Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, Freiburg, 79104, Germany; Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering & Technology, New Campus (KSK), Lahore, 54890, Pakistan; Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628, CN, Delft, the Netherlands
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Ujala Farooq
- Faculty of Aerospace Engineering, Department of Aerospace Structures and Materials, Delft University of Technology, Kluyverweg 1, 2629, HS, Delft, the Netherlands.
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H-12, Islamabad, 46000, Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering & Technology, New Campus (KSK), Lahore, 54890, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| |
Collapse
|
9
|
Mohamed MG, Kuo SW. Progress in the self-assembly of organic/inorganic polyhedral oligomeric silsesquioxane (POSS) hybrids. SOFT MATTER 2022; 18:5535-5561. [PMID: 35880446 DOI: 10.1039/d2sm00635a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This Review describes recent progress in the self-assembly of organic/inorganic POSS hybrids derived from mono-, di-, and multi-functionalized POSS cages. We highlight the self-assembled structures and physical properties of giant surfactants and chain-end- and side-chain-type hybrids derived from mono-functionalized POSS cages; main-chain-type hybrids derived from di-functionalized POSS cages; and star-shaped hybrids derived from multi-functionalized POSS cages; with various polymeric attachments, including polystyrene, poly(methyl methacrylate), phenolic, PVPh, and polypeptides.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
10
|
Krizhanovskiy I, Temnikov M, Kononevich Y, Anisimov A, Drozdov F, Muzafarov A. The Use of the Thiol-Ene Addition Click Reaction in the Chemistry of Organosilicon Compounds: An Alternative or a Supplement to the Classical Hydrosilylation? Polymers (Basel) 2022; 14:polym14153079. [PMID: 35956590 PMCID: PMC9370781 DOI: 10.3390/polym14153079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
This review presents the main achievements in the use of the thiol-ene reaction in the chemistry of silicones. Works are considered, starting from monomers and ending with materials.The main advantages and disadvantages of this reaction are demonstrated using various examples. A critical analysis of the use of this reaction is made in comparison with the hydrosilylation reaction.
Collapse
Affiliation(s)
- Ilya Krizhanovskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Maxim Temnikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Yuriy Kononevich
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Anton Anisimov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Correspondence: (A.A.); (A.M.)
| | - Fedor Drozdov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
| | - Aziz Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
- Correspondence: (A.A.); (A.M.)
| |
Collapse
|
11
|
Iizuka D, Gon M, Tanaka K, Chujo Y. Acceleration of Chemiluminescence Reactions with Coumarin-modified Polyhedral Oligomeric Silsesquioxane. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daisuke Iizuka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
12
|
Siripanich P, Bureerug T, Chanmungkalakul S, Sukwattanasinitt M, Ervithayasuporn V. Mono and Dumbbell Silsesquioxane Cages as Dual-Response Fluorescent Chemosensors for Fluoride and Polycyclic Aromatic Hydrocarbons. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pattara Siripanich
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Teeraya Bureerug
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Supphachok Chanmungkalakul
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Mongkol Sukwattanasinitt
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vuthichai Ervithayasuporn
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
13
|
Prigyai N, Chanmungkalakul S, Sukwattanasinitt M, Ervithayasuporn V. Symmetry driven: the synthesis of co-substituent octasilsesquioxanes. NEW J CHEM 2021. [DOI: 10.1039/d1nj02381k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cubic octasilsesquioxanes with mixed substituents were directly synthesized through a sol–gel process using the mixture of i-butyl(triethoxysilane) and other alkoxysilanes.
Collapse
Affiliation(s)
- Nicha Prigyai
- Department of Chemistry
- Center of Excellence for Innovation in Chemistry
- and Center for Inorganic and Materials Chemistry
- Faculty of Science
- Mahidol University
| | - Supphachok Chanmungkalakul
- Department of Chemistry
- Center of Excellence for Innovation in Chemistry
- and Center for Inorganic and Materials Chemistry
- Faculty of Science
- Mahidol University
| | | | - Vuthichai Ervithayasuporn
- Department of Chemistry
- Center of Excellence for Innovation in Chemistry
- and Center for Inorganic and Materials Chemistry
- Faculty of Science
- Mahidol University
| |
Collapse
|