1
|
Fan Z, Li R, Zhang X, Zhao W, Pan Z, Yang X. Defect Engineering: Can it Mitigate Strong Coulomb Effect of Mg 2+ in Cathode Materials for Rechargeable Magnesium Batteries? NANO-MICRO LETTERS 2024; 17:4. [PMID: 39302540 DOI: 10.1007/s40820-024-01495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Rechargeable magnesium batteries (RMBs) have been considered a promising "post lithium-ion battery" system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market. However, the sluggish diffusion kinetics of bivalent Mg2+ in the host material, related to the strong Coulomb effect between Mg2+ and host anion lattices, hinders their further development toward practical applications. Defect engineering, regarded as an effective strategy to break through the slow migration puzzle, has been validated in various cathode materials for RMBs. In this review, we first thoroughly understand the intrinsic mechanism of Mg2+ diffusion in cathode materials, from which the key factors affecting ion diffusion are further presented. Then, the positive effects of purposely introduced defects, including vacancy and doping, and the corresponding strategies for introducing various defects are discussed. The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized. Finally, the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
Collapse
Affiliation(s)
- Zhengqing Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ruimin Li
- School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanyu Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Zhenghui Pan
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
2
|
Lei P, Liu J, Zhuge S, Lü Z. New Insight of In-situ Generation of Composite Cathode by Converting Na3V2(PO4)3@C to Improve Aqueous Zinc-ion Batteries’ Performance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Cui X, Zhang Y, Cheng S, Liu Y, Shao Z, Sun Z, Wu Y, Guo H, Fu J, Xie E. Achieving high-rate and durable aqueous rechargeable Zn-Ion batteries by enhancing the successive electrochemical conversion reactions. J Colloid Interface Sci 2022; 620:127-134. [PMID: 35421749 DOI: 10.1016/j.jcis.2022.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
The mild electrolyte working environment of rechargeable aqueous Zn-ion batteries (AZIBs) features its promising characteristic and potential application for large-scale energy storage system. However, the poor cycling stability significantly hinders the broad application of AZIBs due to the complex electrochemical conversion reactions during charge-discharge process. Herein, we propose a strategy to improve the electrochemical performance of AZIB by enhancing the successive electrochemical conversion reactions. With a rational design of electrode, an even homogeneous electric field can be achieved in the cathode side, resulting to significantly enhanced efficiency of successive electrochemical conversion reactions. Charge storage mechanism studies reveal that the reversibility behaviors of byproducts alkaline zinc sulfate (ZHS) can dramatically determine the H+/Zn2+ de/intercalation process, and a high reversibility characteristic ensures the facilitated electrochemical kinetics. As expected, the resultant AZIB possesses outstanding electrochemical performance with a high specific capacity of 425.08 mAh⋅g-1 at 0.1 A⋅g-1, an excellent rate capacity of about 60% (246.6 mAh⋅g-1 at 1 A⋅g-1) and superior cycling stability of 93.7% after 3000 cycles (at 3 A⋅g-1). This effective strategy and thinking proposed here may open a new avenue for the development of high-performing AZIBs.
Collapse
Affiliation(s)
- Xiaosha Cui
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yaxiong Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Situo Cheng
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yupeng Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhipeng Shao
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhenheng Sun
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yin Wu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Hongzhou Guo
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jiecai Fu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Erqing Xie
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Liu J, Zhu Y, Cai J, Zhong Y, Han T, Chen Z, Li J. Encapsulating Metal-Organic-Framework Derived Nanocages into a Microcapsule for Shuttle Effect-Suppressive Lithium-Sulfur Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:236. [PMID: 35055255 PMCID: PMC8777985 DOI: 10.3390/nano12020236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/26/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
Long-term stable secondary batteries are highly required. Here, we report a unique microcapsule encapsulated with metal organic frameworks (MOFs)-derived Co3O4 nanocages for a Li-S battery, which displays good lithium-storage properties. ZIF-67 dodecahedra are prepared at room temperature then converted to porous Co3O4 nanocages, which are infilled into microcapsules through a microfluidic technique. After loading sulfur, the Co3O4/S-infilled microcapsules are obtained, which display a specific capacity of 935 mAh g-1 after 200 cycles at 0.5C in Li-S batteries. A Coulombic efficiency of about 100% is achieved. The constructed Li-S battery possesses a high rate-performance during three rounds of cycling. Moreover, stable performance is verified under both high and low temperatures of 50 °C and -10 °C. Density functional theory calculations show that the Co3O4 dodecahedra display large binding energies with polysulfides, which are able to suppress shuttle effect of polysulfides and enable a stable electrochemical performance.
Collapse
Affiliation(s)
- Jinyun Liu
- Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; (Y.Z.); (Y.Z.); (T.H.)
| | - Yajun Zhu
- Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; (Y.Z.); (Y.Z.); (T.H.)
| | - Junfei Cai
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yan Zhong
- Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; (Y.Z.); (Y.Z.); (T.H.)
| | - Tianli Han
- Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; (Y.Z.); (Y.Z.); (T.H.)
| | - Zhonghua Chen
- Shenzhen FBTech Electronics Ltd., Shenzhen 518100, China
| | - Jinjin Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
5
|
Bai X, Cao D, Jiang Z, Zhang H. Exploration of hydrated lithium manganese oxide with a nanoribbon structure as cathodes in aqueous lithium ion and magnesium ion batteries. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01222c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous lithium/magnesium ion battery was assembled with Li0.21MnO2·H2O (LMO) as the cathode and VO2 as the anode.
Collapse
Affiliation(s)
- Xue Bai
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P.R. China
| | - Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| | - Hongyu Zhang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| |
Collapse
|
6
|
Zhang Z, Li Y, Zhao G, Zhu L, Sun Y, Besenbacher F, Yu M. Rechargeable Mg-Ion Full Battery System with High Capacity and High Rate. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40451-40459. [PMID: 34416812 DOI: 10.1021/acsami.1c06106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thanks to the low cost, free dendritic hazards, and high volumetric capacity, magnesium (Mg)-ion batteries have attracted increasing attention as alternative energy storage devices to lithium-ion batteries. Despite the successful development of electrode materials, the real-life application potential of Mg-ion full battery systems (MIFBSs) is largely hindered by the lack of suitable electrode couples and hence low diffusion kinetics, which induce low specific capacity, poor rate performance, and low working voltage. Herein, we report an aqueous rechargeable MIFBS by employing copper hexacyanoferrate (CuHCF) as the cathode and 3,4,9,10-perylene-tetracarboxylic acid diimide (PTCDI) as the anode in 1 moL L-1 MgCl2 electrolyte. The combination of PTCDI//CuHCF allows efficient redox and convenient intercalation/deintercalation of Mg2+ at the electrodes while facilitating a fast transfer of Mg2+ between the two electrodes. As a result, the system delivers a high capacity of ∼120.3 mAh g-1 at a current density of 0.5 A g-1 after 200 operation cycles with a broadened voltage range (0-1.95 V) and maintains a capacity of ∼97.8 mAh g-1 at 2.0 A g-1 after 1000 cycles. Even at a high current density of 5.0 A g-1, the battery provides a steady capacity of ∼81.4 mAh g-1 over 5000 cycles. Moreover, after being applied at 11.0 A g-1, the system can deliver a capacity of ∼126.5 mAh g-1 at 0.5 A g-1. This work emphasizes the great promise of developing suitable electrode couples for aqueous MIFBSs to achieve high capacity and high rate.
Collapse
Affiliation(s)
- Zishuai Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - Yi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Gongyuan Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ye Sun
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
7
|
An B, Li J, Wu X, Li W, Li Y, Sun L, Mi H, Zhang Q, He C, Ren X. One-pot synthesis of N,S-doped pearl chain tube-loaded Ni 3S 2 composite materials for high-performance lithium-air batteries. NANOSCALE 2020; 12:21770-21779. [PMID: 33095215 DOI: 10.1039/d0nr06344d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To improve the high reversibility of lithium-air batteries, an air electrode needs to have excellent electrochemical performance and spatial structure. Ni3S2 nanoparticles are loaded onto an N,S-doped pearl chain tube (N,S-PCT) by a method called quasi-chemical vapor deposition (Q-CVD). Additionally, N and S are doped during the synthesis process, thereby forming an ideal pipe rack-like structure. The large amount of space in the tube rack can provide sufficient storage to act as a buffer for the discharge products, and the interconnected tubes can effectively promote the dispersion of O2 and electrolyte. The addition of Ni3S2 nanoparticles effectively reduces the charge transfer resistance, thereby increasing the electron mobility of the cathode. Ni3S2@N,S-PCT cathodes effectively improve the cycling and high-rate performance of lithium-air batteries, demonstrating an ultrahigh discharge capacity of 16 733.7 mA h g-1 at a current density of 400 mA g-1 and an ultrahigh discharge capacity of 5088.1 mA h g-1 at a current density of 1000 mA g-1. When the cut-off capacity is 1000 mA h g-1, the battery with the Ni3S2@N,S-PCT-800 electrode can achieve cycling stability for 148 cycles. This research provides a new solution for the design of lithium-air batteries with high electrocatalytic performance.
Collapse
Affiliation(s)
- Bohan An
- College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong 518060, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|