1
|
Zhang G, Cao D, Guo S, Fang Y, Wang Q, Cheng S, Zuo W, Yang Z, Cui P. Tuning the Selective Ethanol Oxidation on Tensile-Trained Pt(110) Surface by Ir Single Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202587. [PMID: 35871573 DOI: 10.1002/smll.202202587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Development of efficient and robust electrocatalysts for complete oxidation of ethanol is critical for the commercialization of direct ethanol fuel cells. However, the complete oxidation of ethanol suffers from poor efficiency due to the low C1 pathway selectivity. Herein, single-atomic Ir (Ir1 ) on hcp-PtPb/fcc-Pt core-shell hexagonal nanoplates (PtPb@PtIr1 HNPs) enclosed by Pt(110) surface with a 7.2% tensile strain is constructed to drive complete electro-oxidation of ethanol. Benefiting from the construction of Ir1 sites, the PtPb@PtIr1 HNPs exhibit a Faraday efficiency of 57.93% for the C1 pathway, which is ≈8.3 times higher than that of the commercial Pt/C-JM. Furthermore, the PtPb@PtIr1 HNPs show a top-ranked electro-activity achieving 45.1-fold and 56.3-fold higher than the specific and mass activities of Pt/C-JM, respectively. Meanwhile, the durability can be significantly enhanced by the construction of Ir1 sites. Density functional theory calculations indicate that the strong synergy on the PtPb@PtIr1 HNPs surface significantly promotes the breaking of CC bond of CH2 CO* and facilitates CO oxidation and suppresses the deactivation of the catalyst. This work offers a unique single-atom approach using low-coordination active sites on shape-controlled nanocrystals to tune the selectivity and activity toward complicated catalytic reactions.
Collapse
Affiliation(s)
- Genlei Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Dongjie Cao
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Shiyu Guo
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Yan Fang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Sheng Cheng
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Wansheng Zuo
- Wuhu Tus-Semiconductor Co., Limin East Road 82, Wuhu, 241000, P. R. China
| | - Zhenzhen Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| |
Collapse
|
2
|
Zhang G, Cao D, Wang X, Guo S, Yang Z, Cui P, Wang Q, Dou Y, Cheng S, Shen H. α-calcium sulfate hemihydrate with a 3D hierarchical straw-sheaf morphology for use as a remove Pb 2+ adsorbent. CHEMOSPHERE 2022; 287:132025. [PMID: 34461332 DOI: 10.1016/j.chemosphere.2021.132025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Novel three-dimensional hierarchical α-calcium sulfate hemihydrate with a straw-sheaf morphology (3D α-HH straw-sheaves) are synthesized successfully in glycerin aqueous solution by a simple one-pot method, using as an efficient adsorbent for Pb2+ removal from water. The 3D straw-sheaf morphology, that closely depends on the glycerin/water volume ratio (VGly/VH2O), can be accurately fabricated only when VGly/VH2O is not lower than 3/1. 3D α-HH straw-sheaves are generated via multistep-splitting growth coupled with self-assembly. The obtained 3D α-HH straw-sheaves are further used as an adsorbent to remove Pb2+ from water, exhibiting excellent Pb2+ removal performance with an equilibrium adsorption capacity of 79.19 mgPbgα-HH-1 and removal efficiency of 98.98%, that both higher than those of plate- and columnar-like α-HH. Moreover, the experimental adsorption data for the 3D α-HH straw-sheaves is well fitted with pseudo-second-order kinetic model, and the adsorption isotherm is in good agreement with Langmuir model. The Pb2+ adsorption mechanism is thought to be a chemical adsorption process enforced by chemical bonding and ion exchange. This work demonstrates that 3D α-HH straw-sheaves are highly promising in removing Pb2+ from wastewater, thereby broadening the research field for the practical application of gypsum-based materials.
Collapse
Affiliation(s)
- Genlei Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, PR China
| | - Dongjie Cao
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, PR China
| | - Xianshun Wang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, PR China
| | - Shiyu Guo
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, PR China
| | - Zhenzhen Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, PR China.
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, PR China.
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, PR China
| | - Yan Dou
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, PR China
| | - Sheng Cheng
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, PR China
| | - Hao Shen
- Anhui Liuguo Chemical Co. Ltd, Tonggang Road 8, Tongling, 244021, PR China
| |
Collapse
|
3
|
Fang Y, Cao D, Shi Y, Guo S, Wang Q, Zhang G, Cui P, Cheng S. Highly Porous Pt 2Ir Alloy Nanocrystals as a Superior Catalyst with High-Efficiency C-C Bond Cleavage for Ethanol Electrooxidation. J Phys Chem Lett 2021; 12:6773-6780. [PMID: 34269586 DOI: 10.1021/acs.jpclett.1c01796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Achieving high catalytic performance with high CO2 selectivity is critical for commercialization of direct ethanol fuel cells. Here, we report carbon-supported highly porous Pt2Ir alloy nanocrystals (p-Pt2Ir/C) for an ethanol oxidation reaction (EOR) that displays nearly 7.2-fold enhancement in mass activity and promotes antipoisoning ability and durability for the EOR as compared with the commercial Pt/C-JM. Moreover, the catalyst exhibits high CO2 selectivity, 3.4-fold at 0.65 V (vs. SCE) and 4.1-fold at 0.75 V (vs. SCE) higher as compared with the carbon-supported porous Pt nanocrystals (p-Pt/C). The highly porous structure is composed of interconnected one-dimensional (1D) rough branches with an average diameter of only 1.9 nm, largely promoting Pt utilization efficiency and accelerating mass transfer. The 1D rough branch surface exposed many atomic steps/corners endowed with abundant high activity sites. Alloying with Ir can significantly improve the antipoisoning ability, durability, and C-C bond cleavage ability, thereby evidently enhancing its EOR performance.
Collapse
Affiliation(s)
- Yan Fang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Dongjie Cao
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Yan Shi
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Shiyu Guo
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Genlei Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| | - Sheng Cheng
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Tunxi Road 193, Hefei 230009, PR China
| |
Collapse
|
4
|
Su Z, Chen T. Porous Noble Metal Electrocatalysts: Synthesis, Performance, and Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005354. [PMID: 33733551 DOI: 10.1002/smll.202005354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Active sites (intrinsic activity, quantity, and distribution), electron transfer, and mass diffusion are three important factors affecting the performance of electrocatalysts. Composed of highly active components which are built into various network structures, porous noble metal is an inherently promising electrocatalysts. In recent years, great efforts have been made to explore new efficient synthesis methods and establish structural-performance relationships in the field of porous noble metal electrocatalysis. In this review, the very recent progress in strategies for preparing porous noble metal, including innovation and deeper understanding of traditional methods is summarized. A discussion of relationship between porous noble metal structure and electrocatalytic performance, such as accessibility of active sites, connectivity of skeleton structures, channels dimensions, and hierarchical structures, is provided.
Collapse
Affiliation(s)
- Zhipeng Su
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|