1
|
Metal-organic frameworks for C2H2/CO2 separation: Recent development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
2
|
Dong Q, Ge K, Zhang M, Wang H, Duan J. Rotation configuration control of the sp 2 bond in the diimidazole-dicarboxylate linker for the isomerism of porous coordination polymers. Dalton Trans 2022; 51:12232-12239. [PMID: 35894792 DOI: 10.1039/d2dt01982e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous isomers constructed from the same building blocks but different topology break the general preferred coordination rule of organic linkers and metal nodes, representing an invaluable opportunity for enriching their pore chemistry. Herein, a new group of porous isomers (termed as NTU-69 and NTU-70) was prepared from a C2v symmetric diimidazole-dicarboxylate ligand and mononuclear Cu ion. The structural differences arise from the different rotation configuration of the sp2 bond in the ligand, leading them to exhibit completely different topologies of unc (NTU-69) and sod (NTU-70) as well as framework rigidness. This rotation configuration of the sp2 bond can be controlled by the different acidity of the synthetic solution and the metal/ligand ratio. Gas adsorption and IAST selectivity show that NTU-70 features high potential for CH4 purification from C2H4, C2H6, C3H6 and CO2 mixtures at room temperature. The insight from this work establishes a new bridge between the ligand design and controlled construction of porous isomers.
Collapse
Affiliation(s)
- Qiubing Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Kai Ge
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Minxing Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Huijie Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Vakili M, Kheirabadi R. Insight into the computational modeling and reaction mechanism of the catalytic cycle of benzyl-dichalcogenide compounds in capture and release of carbon dioxide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Zhang C, Qin Y, Duan L, Wang L, Wu Y, Guo Y, Song W, Liu X. pH-Dependent formation of three porous In(III)-MOFs: framework diversity and selective gas adsorption. Dalton Trans 2021; 51:473-477. [PMID: 34929729 DOI: 10.1039/d1dt02935e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH-Dependent self-assembly and structural transformation have been observed in a series of porous In(III)-MOFs, H3O[In3(pta)4(OH)2]·10H2O (NXU-1), [In(pta)2]·C3H10N (NXU-2) and [In(pta)2]·C3H10N (NXU-3) (H2pta = 2-(4-pyridyl)-terephthalic acid). The structural diversities of NXU-1-3 reveal that the pH value of the reaction plays a key role in the assembly of In-MOFs. NXU-1 with excellent stability exhibits highly selective CO2 adsorption over CH4 as compared to NXU-2 and NXU-3, owing to the presence of abundant multiple active sites unveiled by theoretical calculations.
Collapse
Affiliation(s)
- Chengcheng Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yuanyuan Qin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Lijuan Duan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Lu Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Weiming Song
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Zhu J, Yu Y, Fan H, Cai H, Chen Z, Weng L, Ling Y, Zhou Y. Precise regulating synergistic effect in metal–organic framework for stepwise-controlled adsorption. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01216e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
MAC-20 shows a unique two-step pore-shape change and executes a stepwise-controlled adsorption of dyes mixture in order of their sizes.
Collapse
Affiliation(s)
- Jiaxing Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Yi Yu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Hongchuan Fan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Huaqiang Cai
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- China
| | - Zhenxia Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Linhong Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Department of Chemistry
- Fudan University
- Shanghai
- China
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Department of Chemistry
- Fudan University
- Shanghai
- China
| |
Collapse
|