1
|
Xu J, Cao S, Zhong M, Ren S, Chen X, Li W, Wang C, Wang Z, Lu X, Lu X. Rational design of bimetal phosphide embedded in carbon nanofibers for boosting oxygen evolution. J Colloid Interface Sci 2024; 657:83-90. [PMID: 38035422 DOI: 10.1016/j.jcis.2023.11.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The development of non-precious metal electrocatalysts for oxygen evolution reaction (OER) is crucial for generating large-scale hydrogen through water electrolysis. In this work, bimetal phosphides embedded in electrospun carbon nanofibers (P-FeNi/CNFs) were fabricated through a reliable electrospinning-carbonization-phosphidation strategy. The incorporation of P-FeNi nanoparticles within CNFs prevented them from forming aggregation and further improved their electron transfer property. The bimetal phosphides helped to weaken the adsorption of O intermediate, promoting the OER activity, which was confirmed by the theoretical results. The as-prepared optimized P-Fe1Ni2/CNFs catalyst exhibited very high OER electrocatalytic performance, which required very low overpotentials of just 239 and 303 mV to reach 10 and 1000 mA cm-2, respectively. It is superior to the commercial RuO2 and many other related OER electrocatalysts reported so far. In addition, the constructed alkaline electrolyzer based on the P-Fe1Ni2/CNFs catalyst and Pt/C delivered a cell voltage of 1.52 V at 10 mA cm-2, surpassing the commercial RuO2||Pt/C (1.61 V) electrolyzer. It also offered excellent alkaline OER performance in simulated seawater electrolyte. This demonstrated its potential for practical applications across a broad range of environmental conditions. Our work provides new ideas for the ration design of highly efficient non-precious metal-based OER catalysts for water electrolysis.
Collapse
Affiliation(s)
- Jiaqi Xu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Mengxiao Zhong
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Siyu Ren
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Xiaojie Chen
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Weimo Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China.
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
2
|
Nayem SA, Islam S, Aziz MA, Ahammad AS. Mechanistic insight into hydrothermally prepared molybdenum-based electrocatalyst for overall water splitting. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
3
|
Interfacial Electronic Engineering of NiSe–Anchored Ni–N–C Composite Electrocatalyst for Efficient Hydrogen Evolution. Catalysts 2022. [DOI: 10.3390/catal12121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rational design and construction of cost–effective electrocatalysts for efficient hydrogen production has attracted extensive research attention worldwide. Herein, we report the construction of a transition metal selenide/carbon composite catalyst featuring uniform NiSe nanoparticles anchored to single Ni atom doped porous carbon structure (NiSe/Ni–N–C) via a facile one–pot pyrolysis of low–cost solid mixtures. NiSe/Ni–N–C exhibits remarkable catalytic performance towards hydrogen evolution reaction (HER) in 1.0 M KOH, requiring a low overpotential of 146 mV to reach a current density of 10 mA cm−2. The unique carbon layer encapsulation derived from the enwrapping of fluid catalytic cracking slurry further renders NiSe/Ni–N–C excellent for long–term durability in electrolyte corrosion and nanostructure aggregation. This work paves the way for the design and synthesis of highly efficient composite HER electrocatalysts.
Collapse
|
4
|
Zhang X, Hua S, Lai L, Wang Z, Liao T, He L, Tang H, Wan X. Strategies to improve electrocatalytic performance of MoS 2-based catalysts for hydrogen evolution reactions. RSC Adv 2022; 12:17959-17983. [PMID: 35765324 PMCID: PMC9204562 DOI: 10.1039/d2ra03066g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Electrocatalytic hydrogen evolution reactions (HERs) are a key process for hydrogen production for clean energy applications. HERs have unique advantages in terms of energy efficiency and product separation compared to other methods. Molybdenum disulfide (MoS2) has attracted extensive attention as a potential HER catalyst because of its high electrocatalytic activity. However, the HER performance of MoS2 needs to be improved to make it competitive with conventional Pt-based catalysts. Herein, we summarize three typical strategies for promoting the HER performance, i.e., defect engineering, heterostructure formation, and heteroatom doping. We also summarize the computational density functional theory (DFT) methods used to obtain insight that can guide the construction of MoS2-based materials. Additionally, the challenges and prospects of MoS2-based catalysts for the HER have also been discussed.
Collapse
Affiliation(s)
- Xinglong Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Shiying Hua
- Wuhan Institute of Marine Electric Propulsion Wuhan 430064 P. R. China
| | - Long Lai
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Zihao Wang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Tiaohao Liao
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Liang He
- School of Mechanical Engineering, Sichuan University Chengdu 610065 P. R. China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Xinming Wan
- China Automotive Engineering Research Institute Co., Ltd. Chongqing 401122 P. R. China
| |
Collapse
|
5
|
Ge J, Chen Y, Zhao Y, Wang Y, Zhang F, Lei X. Activated MoS 2 by Constructing Single Atomic Cation Vacancies for Accelerated Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26846-26857. [PMID: 35657022 DOI: 10.1021/acsami.2c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Regulating the electronic structure of MoS2 by constructing cationic vacancies is an effective method to activate and improve its intrinsic properties. Herein, we synthesize the MoS2-based composite with abundant single atomic Mo cation vacancies through uniformly loading nickel-cobalt-Prussian blue analogues (NiCoPBA) (NiCoPBA-MoS2-VMo) by immersing a single Ni atom-decorated MoS2 (Ni-MoS2) into K3[Co(CN)6] solution. Subsequently, NiCoP-MoS2-VMo with improved conductivity is obtained by phosphating the composite as a high-efficiency hydrogen evolution reaction (HER) catalyst. Experiments and theoretical calculations indicate that the electrons of NiCoP are spontaneously transferred to the substrate MoS2-VMo nanosheets in NiCoP-MoS2-VMo, and the moderately oxidized NiCoP is beneficial to the adsorption of OH*. Meanwhile, the mono-atomic Mo cation vacancies of the catalyst modulate the electronic structure of S, optimizing the adsorption of hydrogen in the reaction process. Therefore, NiCoP-MoS2-VMo has enhanced chemical adsorption for H* (on MoS2-VMo) and OH*(on NiCoP), expediting the water-splitting step and HER catalysis, and benefiting from the regulation of the electronic structure induced by the construction of metallic Mo vacancies in MoS2, the as-prepared catalyst displays an overpotential of only 67 mV at 10 mA cm-2 with long-term stability (no current decay over 20 h). This work affords not only a kind of efficient HER catalysts but also a new valuable route for developing inexpensive and high-performance catalysts with single atomic cation vacancies.
Collapse
Affiliation(s)
- Jingmin Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxin Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiping Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Controllable growth of Fe-doped NiS 2 on NiFe-carbon nanofibers for boosting oxygen evolution reaction. J Colloid Interface Sci 2022; 614:556-565. [PMID: 35121514 DOI: 10.1016/j.jcis.2022.01.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
The construction of high-efficiency and low-cost electrocatalysts toward oxygen evolution reaction (OER) to improve the overall water decomposition performance is a fascinating route to deal with the clean energy application. Herein, Fe-doped NiS2 crystals grown on the surface of carbon nanofibers (CNFs) encapsulated with NiFe alloy nanoparticles ((Ni,Fe)S2/NiFe-CNFs) are fabricated through an electrospinning-calcination-vulcanization process, which has been used as a splendid electrocatalyst for OER. Benefitting from the abundant electrochemical active sites from the incorporation of Fe element in NiS2 and the synergistic effect between NiFe-CNFs and surface sulfides, the obtained (Ni,Fe)S2/NiFe-CNFs catalyst exhibits highly electrochemical activities and satisfactory durability toward OER in an alkaline medium with a low overpotential of only 287 mV at a high current density of 30 mA cm-2, and with a little decline in the current retention after 48 h, suggesting its superior OER performance even compared with some noble metal-based electrocatalysts. Additionally, a two-electrode system conducted by using the (Ni,Fe)S2/NiFe-CNFs and commercial Pt/C as electrodes, only needs a cell voltage of 1.54 V to afford 10 mA cm-2 for overall water splitting, which is even much better than the RuO2||Pt/C electrolyzer. This study offers a promising approach to prepare high-efficiency OER catalysts toward overall water splitting.
Collapse
|
7
|
Dai S, Tang X, Li X, Zhang J, Shao Z. Synthesis of NiFe2O4 with different precipitation agents for Li-ion battery anode material by co-precipitation. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Le PA, Le VQ, Tran TL, Nguyen NT, Phung TVB. Computation and Investigation of Two-Dimensional WO 3·H 2O Nanoflowers for Electrochemical Studies of Energy Conversion and Storage Applications. ACS OMEGA 2022; 7:10115-10126. [PMID: 35382300 PMCID: PMC8973110 DOI: 10.1021/acsomega.1c06150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study is to prepare a two-dimensional (2D) WO3·H2O nanostructure assembly into a flower shape with good chemical stability for electrochemical studies of catalyst and energy storage applications. The 2D-WO3·H2O nanoflowers structure is created by a fast and simple process at room condition. This cost-effective and scalable technique to obtain 2D-WO3·H2O nanoflowers illustrates two attractive applications of electrochemical capacitor with an excellent energy density value of 25.33 W h kg-1 for high power density value of 1600 W kg-1 and good hydrogen evolution reaction results (low overpotential of 290 mV at a current density of 10 mA cm-2 with a low Tafel slope of 131 mV dec-1). A hydrogen evolution reaction (HER) study of WO3 in acidic media of 0.5 M H2SO4 and electrochemical capacitor (supercapacitors) in 1 M Na2SO4 aqueous electrolyte (three electrode system measurements) demonstrates highly desirable characteristics for practical applications. Our design for highly uniform 2D-WO3·H2O as catalyst material for HER and active material for electrochemical capacitor studies offers an excellent foundation for design and improvement of electrochemical catalyst based on 2D-transition metal oxide materials.
Collapse
Affiliation(s)
- Phuoc Anh Le
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
| | - Van Qui Le
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Thien Lan Tran
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
- Department
of Physics, Hue University of Education, Hue University, 34 Le
Loi Stress, Hue 530000, Vietnam
| | - Nghia Trong Nguyen
- School
of Chemical Engineering, Hanoi University
of Science and Technology, Hanoi 100000, Vietnam
| | - Thi Viet Bac Phung
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
| |
Collapse
|
9
|
Chen H, Qiao S, Yang J, Du X. NiMo/NiCo2O4 as synergy catalyst supported on nickel foam for efficient overall water splitting. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Facile Synthesis of 1T-Phase MoS 2 Nanosheets on N-Doped Carbon Nanotubes towards Highly Efficient Hydrogen Evolution. NANOMATERIALS 2021; 11:nano11123273. [PMID: 34947622 PMCID: PMC8704595 DOI: 10.3390/nano11123273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
1T-phase molybdenum disulfide is supposed to be one of the non-precious metal-based electrocatalysts for the hydrogen evolution reaction with the highest potential. Herein, 1T-MoS2 nanosheets were anchored on N-doped carbon nanotubes by a simple hydrothermal process with the assistance of urea promotion transition of the 1T phase. Based on the 1T-MoS2 nanosheets anchored on the N-doped carbon nanotubes structures, 1T-MoS2 nanosheets can be said to have highly exposed active sites from edges and the basal plane, and the dopant N in carbon nanotubes can promote electron transfer between N-doped carbon nanotubes and 1T-MoS2 nanosheets. With the synergistic effects of this structure, the excellent 1T-MoS2/ N-doped carbon nanotubes catalyst has a small overpotential of 150 mV at 10 mA cm−2, a relatively low Tafel slope of 63 mV dec−1, and superior stability. This work proposes a new strategy to design high-performance hydrogen evolution reaction catalysts.
Collapse
|
11
|
Transition metals decorated g-C3N4/N-doped carbon nanotube catalysts for water splitting: A review. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115510] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Wang P, Dai Y, Wang X, Ren X, Luo C. Boosting Hydrogen Evolution on MoS
2
/CNT Modified by Poly(sodium‐p–styrene sulfonate)
via
Proton Concentration in Acid Solution. ChemElectroChem 2021. [DOI: 10.1002/celc.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pengfei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 PR China
| |
Collapse
|
13
|
Yang X, DeLaney CR, Burns KT, Elrod LC, Mo W, Naumann H, Bhuvanesh N, Hall MB, Darensbourg MY. Self-Assembled Nickel-4 Supramolecular Squares and Assays for HER Electrocatalysts Derived Therefrom. Inorg Chem 2021; 60:7051-7061. [PMID: 33891813 DOI: 10.1021/acs.inorgchem.0c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-state structures find a self-assembled tetrameric nickel cage with carboxylate linkages, [Ni(N2S'O)I(CH3CN)]4 ([Ni-I]40), resulting from sulfur acetylation by sodium iodoacetate of an [NiN2S]22+ dimer in acetonitrile. Various synthetic routes to the tetramer, best described from XRD as a molecular square, were discovered to generate the hexacoordinate nickel units ligated by N2Sthioether, iodide, and two carboxylate oxygens, one of which is the bridge from the adjacent nickel unit in [Ni-I]40. Removal of the four iodides by silver ion precipitation yields an analogous species but with an additional vacant coordination site, [Ni-Solv]+, a cation but with coordinated solvent molecules. This also recrystallizes as the tetramer [Ni-Solv]44+. In solution, dissociation into the (presumed) monomer occurs, with coordinating solvents occupying the vacant site [Ni(N2S'O)I(solv)]0, ([Ni-I]0). Hydrodynamic radii determined from 1H DOSY NMR data suggest that monomeric units are present as well in CD2Cl2. Evans method magnetism values are consistent with triplet spin states in polar solvents; however, in CD2Cl2 solutions no paramagnetism is evident. The abilities of [Ni-I]40 and [Ni-Solv]44+ to serve as sources of electrocatalysts, or precatalysts, for the hydrogen evolution reaction (HER) were explored. Cyclic voltammetry responses and bulk coulometry with gas chromatographic analysis demonstrated that a stronger acid, trifluoroacetic acid, as a proton source resulted in H2 production from both electroprecatalysts; however, electrocatalysis developed primarily from uncharacterized deposits on the electrode. With acetic acid as a proton source, the major contribution to the HER is from homogeneous electrocatalysis. Overpotentials of 490 mV were obtained for both the solution-phase [Ni-I]0 and [Ni-Solv]+. While the electrocatalyst derived from [Ni-Solv]+ has a substantially higher TOF (102 s-1) than [Ni-I]0 (19 s-1), it has a shorter catalytically active lifespan (4 h) in comparison to [Ni-I]0 (>18 h).
Collapse
Affiliation(s)
- Xuemei Yang
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Christopher R DeLaney
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Kyle T Burns
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Lindy C Elrod
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Wenting Mo
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Haley Naumann
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Michael B Hall
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Marcetta Y Darensbourg
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Kang Q, Lai D, Tang W, Lu Q, Gao F. Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction. Chem Sci 2021; 12:3818-3835. [PMID: 34163652 PMCID: PMC8179442 DOI: 10.1039/d0sc06716d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
NiFe alloy catalysts have received increasing attention due to their low cost, easy availability, and excellent oxygen evolution reaction (OER) catalytic activity. Although it is considered that the co-existence of Ni and Fe is essential for the high catalytic activity, the identification of active sites and the mechanism of OER in NiFe alloy catalysts have been controversial for a long time. This review focuses on the catalytic centers of NiFe alloys and the related mechanism in the alkaline water oxidation process from the perspective of crystal structure/composition modulation and structural design. Briefly, amorphous structures, metastable phases, heteroatom doping and in situ formation of oxyhydroxides are encouraged to optimize the chemical configurations of active sites toward intrinsically boosted OER kinetics. Furthermore, the construction of dual-metal single atoms, specific nanostructures, carbon material supports and composite structures are introduced to increase the abundance of active sites and promote mass transportation. Finally, a perspective on the future development of NiFe alloy electrocatalysts is offered. The overall aim of this review is to shed light on the exploration of novel electrocatalysts in the field of energy.
Collapse
Affiliation(s)
- Qiaoling Kang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Dawei Lai
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University Nanjing 210093 P. R. China
| | - Wenyin Tang
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University Nanjing 210093 P. R. China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Feng Gao
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
15
|
Wang C, Zhang L, Yang P. Ni/Co phosphide nanoparticles embedded in N/P-doped carbon nanofibers towards enhanced hydrogen evolution. CrystEngComm 2021. [DOI: 10.1039/d0ce01621g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition-metal phosphides have been identified as effective materials for improving electrocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Changle Wang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- P.R. China
- School of Material Science and Engineering
| | - Lipeng Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo
- P.R. China
| | - Ping Yang
- School of Material Science and Engineering
- University of Jinan
- Jinan
- P.R. China
| |
Collapse
|
16
|
Huang WH, Li XM, Yang XF, Zhang HB, Wang F, Zhang J. Highly efficient electrocatalysts for overall water splitting: mesoporous CoS/MoS 2 with hetero-interfaces. Chem Commun (Camb) 2021; 57:4847-4850. [PMID: 33870379 DOI: 10.1039/d1cc01578h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mesoporous CoS/MoS2 with abundant heterogeneous interfaces was faciley synthesized from a bimetallic hybrid zeolitic imidazolate framework, which showed excellent catalytic activity and reaction kinetics in both the HER and OER in 1 M KOH. Meanwhile, as a cathode and anode in water splitting electrocatalysis, it delivers a low cell voltage of 1.61 V at 10 mA cm-2 and excellent durability.
Collapse
Affiliation(s)
- Wen-Huan Huang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xi-Ming Li
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xiu-Fang Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Hua-Bin Zhang
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|