1
|
Peng G, Zhou GX, Dong XT, Peng YB, Zhang RY, Ma YZ, Ren XM. Multifunctional chiral metal hydrogen-bonded organic frameworks constructed from lanthanide ions with a trigonal prismatic coordination environment. Dalton Trans 2024; 54:152-158. [PMID: 39526395 DOI: 10.1039/d4dt02131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Two pairs of chiral enantiomers D/L-Dy(PMP)3·2H2O (D-1/L-1) and D/L-Yb(PMP)3·2H2O (D-2/L-2) were synthesized by the introduction of enantiomerically pure D/L-PMP (PMP = (phosphonomethyl)proline) ligands into lanthanide coordination chemistry. The chiral characteristics of these products were confirmed by single crystal X-ray diffraction, second harmonic generation (SHG) measurements and circular dichroism (CD) spectroscopy. These complexes are composed of 1D chains constructed from lanthanide ions with a trigonal prismatic coordination geometry and PMP ligands. The assembly of the 1D chains led to the formation of a lanthanide hydrogen-bonded organic framework with 1D water chains filled in the channels. Zero-field slow relaxation of magnetization was detected in L-1, whereas L-2 showed field-induced single-molecule magnet (SMM) behavior. Complexes D-1, L-1 and L-2 show proton conductive ability and their conductivity values reach the order of 10-5 S cm-1 at 90 °C and 98% relative humidity.
Collapse
Affiliation(s)
- Guo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guo-Xing Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xiang-Tao Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yong-Bo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Rong-Yan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ying-Zhao Ma
- Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
2
|
Lu GL, Chiu ST, Lin PH, Long J. Modulating magnetic anisotropy in linear tetranuclear dysprosium(III) complexes via coordinated anions. Dalton Trans 2024; 53:18575-18584. [PMID: 39470254 DOI: 10.1039/d4dt01949k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report the synthesis, structures, and magnetic properties of two novel linear tetranuclear complexes with the general formula [Dy4(Hheb)2(heb)4X2(MeOH)4] (X- = NO3-, OAc-; H2heb = (E)-N'-(1-(2-hydroxyphenyl)ethylidene)benzohydrazide, OAc- = acetate). The rigid ligands (Hheb-/heb2-) incorporate phenoxide groups and bridge the Dy3+ ions in an unusual tetranuclear linear assembly. Notably, we demonstrate through magnetic measurements and theoretical calculations how the anion (X) coordinated at the peripheral Dy3+ centers acts as a switch, significantly changing the magnetic anisotropy of the entire complex. This control over magnetic anisotropy through the selection of the coordinated anion offers a promising avenue for tailoring the functionality of single-molecule magnets.
Collapse
Affiliation(s)
- Guan-Lin Lu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Shih-Ting Chiu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Po-Heng Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
3
|
Félix G, Tolpygin AO, Larquey A, Gogolev IA, Nelyubina YV, Guari Y, Larionova J, Trifonov AA. Multifunctional Dy 3+ Complexes with Triphenylmethanolates: Structural Diversity, Luminescence, and Magnetic Relaxation. Molecules 2024; 29:5343. [PMID: 39598732 PMCID: PMC11596367 DOI: 10.3390/molecules29225343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
The coordination environment of magneto-luminescent Dy3+-based Single-Molecule Magnets (SMM) is a crucial factor influencing both magnetic and luminescent properties. In this work, we explore how triphenylmethanolate (Ph3CO-), in combination with other ligands, can modulate the structure and, therefore, the magnetic properties of Dy3+-based SMM. Using triphenylmethanolate in combination with THF and pyridine (Py) as co-ligands, we synthesized a series of mononuclear cis-[Dy(OCPh3)2(THF)4][BPh4]·(2,6-Me2C5H3N) (1), trans-Dy(OCPh3)3(THF)2 (2), fac-Dy(OCPh3)3(py)3 (3) and dinuclear [(Ph3CO)Dy(THF){(μ2-Cl)2Li(THF)2}μ2-Cl]2 (4) complexes where the Dy3+ ion presents five- or six-coordinate geometries. Dinuclear compound 4 exhibits a genuine SMM behavior with a relatively high energy barrier of 421 cm-1, while mononuclear complexes 1-3 are field-induced SMM. These complexes also present Dy3+-characteristic luminescence, highlighting their multifunctional character.
Collapse
Affiliation(s)
- Gautier Félix
- ICGM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (A.L.); (Y.G.)
| | - Aleksei O. Tolpygin
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina Str., GSP-445, 603950 Nizhny Novgorod, Russia;
| | - Aurore Larquey
- ICGM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (A.L.); (Y.G.)
| | - Ilia A. Gogolev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., bld. 1, 119334 Moscow, Russia; (I.A.G.); (Y.V.N.)
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., bld. 1, 119334 Moscow, Russia; (I.A.G.); (Y.V.N.)
| | - Yannick Guari
- ICGM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (A.L.); (Y.G.)
| | - Joulia Larionova
- ICGM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (A.L.); (Y.G.)
| | - Alexander A. Trifonov
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina Str., GSP-445, 603950 Nizhny Novgorod, Russia;
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., bld. 1, 119334 Moscow, Russia; (I.A.G.); (Y.V.N.)
| |
Collapse
|
4
|
Wang M, Han Z, Garcia Y, Cheng P. Six-Coordinated Co II Single-Molecule Magnets: Synthetic Strategy, Structure and Magnetic Properties. Chemphyschem 2024; 25:e202400396. [PMID: 38889310 DOI: 10.1002/cphc.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The pursuit of molecule-based magnetic memory materials contributes significantly to high-density information storage research in the frame of the ongoing information technologies revolution. Remarkable progress has been achieved in both transition metal (TM) and lanthanide based single-molecule magnets (SMMs). Notably, six-coordinated CoII SMMs hold particular research significance owing to the economic and abundant nature of 3d TM ions compared to lanthanide ions, the substantial spin-orbit coupling of CoII ions, the potential for precise control over coordination geometry, and the air-stability of coordination-saturated structures. In this review, we will summarize the progress made in six-coordinated CoII SMMs, organized by their coordination geometry and molecular structure similarity. Valuable insights, principles, and new mechanism gleaned from this research and remaining issues that need to be addressed will also be discussed to guide future optimization.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zongsu Han
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Wang JL, Chen JT, Yan H, Wang TT, Zhang YQ, Sun WB. Constructing high axiality mononuclear dysprosium molecular magnets via a regulation-of-co-ligands strategy. Dalton Trans 2024; 53:10982-10990. [PMID: 38874222 DOI: 10.1039/d4dt00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Two lanthanide complexes with formulae [DyIII(LN5)(pentafluoro-PhO)3] (1) and [DyIII(LN5)(2,6-difluoro-PhO)2](BPh4) (2) (LN5 = 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadecal (19),2,13,15,17-pentaene) were structurally and magnetically characterized. DyIII ions lie in the cavity of a five coordinate nitrogen macrocycle, and in combination with the introduction of multi-fluorinated monodentate phenoxyl coligands a high axiality coordination symmetry is built. Using the pentafluorophenol co-ligand, complex 1 with a D2d coordination environment, is obtained and displays moderate single-molecule magnets (SMMs) behavior. When difluorophenol co-ligands were used, a higher local axisymmetric pentagonal bipyramidal coordination geometry was observed in complex 2, which displays apparent slow magnetic relaxation behavior with a hysteresis temperature of up to 5 K. Further magnetic studies of diluted samples combined with ab initio calculations indicate that the high axiality plays a crucial role in suppressing quantum tunneling of magnetization (QTM) and consequently results in good slow magnetic relaxation behavior. Different fluoro-substituted phenoxyl co-ligands have phenoloxy oxygen atoms with different electrostatic potentials as well as a different number of phenoloxy coligands along the magnetic axis, resulting in different ligand field strengths and coordination symmetries.
Collapse
Affiliation(s)
- Jia-Ling Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Ji-Tun Chen
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Han Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Tian-Tian Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wen-Bin Sun
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| |
Collapse
|
6
|
Vieru V, Gómez-Coca S, Ruiz E, Chibotaru LF. Increasing the Magnetic Blocking Temperature of Single-Molecule Magnets. Angew Chem Int Ed Engl 2024; 63:e202303146. [PMID: 37539652 DOI: 10.1002/anie.202303146] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
The synthesis of single-molecule magnets (SMMs), magnetic complexes capable of retaining magnetization blocking for a long time at elevated temperatures, has been a major concern for magnetochemists over the last three decades. In this review, we describe basic SMMs and the different approaches that allow high magnetization-blocking temperatures to be reached. We focus on the basic factors affecting magnetization blocking, magnetic axiality and the height of the blocking barrier, which can be used to group different families of complexes in terms of their SMM efficiency. Finally, we discuss several practical routes for the design of mono- and polynuclear complexes that could be applied in memory devices.
Collapse
Affiliation(s)
- Veacheslav Vieru
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, 6229 EN, Maastricht, The Netherlands
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028, Barcelona, Spain
- Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Liviu F Chibotaru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, 3001, Leuven, Belgium
| |
Collapse
|
7
|
Dong XT, Yu MQ, Peng YB, Zhou GX, Peng G, Ren XM. Single molecule magnet features in luminescent lanthanide coordination polymers with heptacoordinate Dy/Yb(III) ions as nodes. Dalton Trans 2023; 52:12686-12694. [PMID: 37609766 DOI: 10.1039/d3dt02106h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Two sets of 1D/2D lanthanide coordination polymers with formulas of Ln(oqa)3·2H2O [Hoqa = 2-(4-oxoquinolin-1(4H)-yl) acetic acid, Ln = Dy (1), Yb (2)] and Ln(oaa)2(HCOO)(H2O) [Hoaa = 2-(9-oxoacridin-10(9H)-yl) acetic acid, Ln = Dy (3), Yb (4)] have been synthesized and their physical properties were investigated. All four complexes are constructed from seven-coordinate lanthanide ions and corresponding organic linkers. The lanthanide ions in 1 and 2 adopt a pentagonal bipyramid coordination geometry, whereas the coordination geometry of lanthanide ions in 3 and 4 can be described as a capped octahedron. Slow magnetic relaxation behaviors were observed in these four products at a zero/non-zero static magnetic field. Complexes 1, 2 and 4 exhibit the characteristic emission of Ln(III) ions, whereas complex 3 shows ligand-based emission. Bright yellow light emission was also observed when a voltage was applied, demonstrating the potential of 1 for application in light-emitting diodes (LEDs). Compounds 3 and 4 are the first examples of lanthanide complexes based on Hoaa ligands.
Collapse
Affiliation(s)
- Xiang-Tao Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Meng-Qing Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yong-Bo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guo-Xing Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
8
|
Kapurwan S, Sahu PK, Raizada M, Kharel R, Konar S. [α-AsW 9O 33] 9- bridged hexagonal clusters of Ln(III) showing field induced SMM behavior: experimental and theoretical insight. Dalton Trans 2023. [PMID: 37357913 DOI: 10.1039/d3dt00406f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Polyoxometalates (POM), as inorganic polydentate oxygen donors, provide binding opportunities for oxophilic lanthanide metal centers to construct novel Ln-substituted POM materials with exciting structures and attractive properties. Herein, we have reported four arsenotungstate [α-AsW9O33]9- based lanthanide-containing polyoxometalates [CsxK36-x{Ln6(H2O)12(α-AsW9O33)6}]·yH2O (Ln = Er (1), Gd (2), Ho (3), and Tb (4)), which are synthesized in an alkaline medium. Complexes 1-3 are the dimeric structures of [Ln3(H2O)6(α-AsW9O33)3]18- polyanions, whereas complex 4 is a hexamer of the polyanion [Tb (H2O)2(α-AsW9O33)]6- as a building unit. In all the complexes, [α-AsW9O33]9- units are staggered up and down and give rise to the chair conformation, where one [α-AsW9O33]9- unit bridges two Ln(III) centers through four μ2-oxygen and two terminal oxygen atoms, resulting in the hexagonal arrangement of lanthanides. The dynamic magnetic measurement indicates that only complex 1 exhibits slow relaxation of magnetization with an applied dc field (1500 Oe). To gain insight into the slow relaxation of magnetization in complex 1, the ligand-field parameters and the splitting of the ground-state multiplet of the Er(III) ions have been estimated. The ab initio calculation results confirm that the ground state wave function of these molecules (1, 3, and 4) is mainly composed of a mixture of mJ states, and the non-axial crystal field (CF) terms are more predominant than the axial CF term. The solid-state fluorescence spectra of 1-4 reveal that the photoexcitation O → M ligand-to-metal charge-transfer (LMCT) of arsenotungstate fragments is effectively quenched due to the spatial coordination environment around the Ln(III) ion.
Collapse
Affiliation(s)
- Sandhya Kapurwan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Mukul Raizada
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Ranjan Kharel
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
9
|
Wang J, Sun CY, Zheng Q, Wang DQ, Chen YT, Ju JF, Sun TM, Cui Y, Ding Y, Tang YF. Lanthanide Single-molecule Magnets: Synthetic Strategy, Structures, Properties and Recent Advances. Chem Asian J 2023; 18:e202201297. [PMID: 36802202 DOI: 10.1002/asia.202201297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Single-molecule magnets (SMMs) show wide potential applications in the field of ultrahigh-density storage materials, quantum computing, spintronics, and so on. Lanthanide (Ln) SMMs, as an important category of SMMs, open up a promising prospect due to their large magnetic moments and huge magnetic anisotropy. However, the construction of high performance for Ln SMMs remains an enormous challenge. Although remarkable advances are focused on the topic of Ln SMMs, the research on Ln SMMs with different nuclear numbers is still deficient. Therefore, this review summarizes the design strategies for the construction of Ln SMMs, as well as the metal skeleton types. Furthermore, we collect reported Ln SMMs with mononuclearity, dinuclearity, and multinuclearity (three or more Ln spin centers) and the SMM properties including energy barrier (Ueff ) and pre-exponential factor (τ0 ) are described. Finally, Ln SMMs with low-nuclearity SMMs, especially for single-ion magnets (SIMs), are highlighted to understand the correlations between structures and magnetic behavior of the detail SMM properties are described. We expect the review can shed light on the future developments of high-performance Ln SMMs.
Collapse
Affiliation(s)
- Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China.,Nantong Key Lab of Intelligent and New Energy Materials, Nantong, Jiangsu 226019, P. R. China
| | - Cheng-Yuan Sun
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Qi Zheng
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Dan-Qi Wang
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Yu-Ting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Jian-Feng Ju
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Tong-Ming Sun
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Ying Cui
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Yan Ding
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China
| | - Yan-Feng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu, 226019, P. R. China.,Nantong Key Lab of Intelligent and New Energy Materials, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
10
|
Ghazali NF, Vignesh KR, Phonsri W, Murray KS, Junk PC, Deacon GB, Turner DR. Efficient synthetic route to heterobimetallic trinuclear complexes [Ln-Mn-Ln] and their single molecule magnetic properties. Dalton Trans 2022; 51:18502-18513. [PMID: 36422236 DOI: 10.1039/d2dt02616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of mononuclear lanthanoidate complexes isolated as [Bu4N][Ln(QCl4)] 1Ln (QCl = 5-chloro-8-quinolinolate; Ln = Eu, Gd, Tb, Dy, Ho, and Er) have been prepared, characterised, and used as facile precursors to obtain a series of new heterobimetallic complexes as crystalline materials. Reaction of 1Ln with manganese nitrate forms [Ln2Mn(QCl)8] (2Ln, where Ln = Tb, Dy, Er and Yb) which have been structurally characterised in the cases of 2Tb and 2Yb. The heteroleptic trinuclear complex [Dy3(QCl)8Cl(OH2)], 3, has also been obtained. Compounds 1Dy, 1Tb, and 1Er display slow relaxation of magnetisation below 10K, particularly for the prolate Er3+ ion. These results also suggest that the positive effects of the change from mononuclear to trinuclear lanthanoid complexes enhance their single molecule magnetic (SMM) behaviour, as evidenced by the well resolved frequency dependent AC out-of-phase susceptibility maxima seen in the 2Ln systems, that have been analysed quantitatively. The synthesis used here provides a promising strategy in obtaining heterobimetallic complexes with quinolinolate ligands and also constructing efficient heterobimetallic SMMs.
Collapse
Affiliation(s)
- Nurul F Ghazali
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia. .,Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Selangor, Malaysia
| | - Kuduva R Vignesh
- Department of Chemical Sciences, IISER Mohali, Sector-81, SAS Nagar, Mohali-140306, Punjab, India
| | - Wasinee Phonsri
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Keith S Murray
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Glen B Deacon
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - David R Turner
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
11
|
Zhang B, Guo X, Tan P, Lv W, Bai X, Zhou Y, Yuan A, Chen L, Liu D, Cui HH, Wang R, Chen XT. Axial Ligand as a Critical Factor for High-Performance Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. Inorg Chem 2022; 61:19726-19734. [PMID: 36417790 DOI: 10.1021/acs.inorgchem.2c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The choice of axial ligands is of great importance for the construction of high-performance Dy-based single-molecule magnets (SMMs). Here, combining axial ligands Ph3SiO- (anion of triphenylsilanol) and 2,6-dichloro-4-nitro-PhO- (the anion of 2,6-dichloro-4-nitrophenol) with a neutral macrocyclic ligand 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),2,13,15,17-pentaene (L2N5) generates two new pentagonal bipyramidal Dy(III) complexes [DyIII(L2N5) (X)2](BPh4) (X = Ph3SiO-, 1; 2,6-dichloro-4-nitro-PhO-, 2) with strong axial ligand fields. Magnetic characterizations show that 1 possesses a large energy barrier above 1000 K and a magnetic hysteresis up to 9 K, whereas 2 only displays field-induced peaks of alternating-current susceptibilities without the hysteresis loop, even though 2 has a similar coordination geometry with 1. Detailed Ab initio calculations indicate an apparent difference in the axial negative charge between both complexes, which is caused by the diverse electron-donating properties of the axial ligands. The present work provides an efficient strategy to enhance the SMMs' properties, which highlights that the electron-donating property of the axial ligands is especially important for constructing the high-performance Dy-based SMMs.
Collapse
Affiliation(s)
- Ben Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xuefeng Guo
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Pengfei Tan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaoye Bai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Yang Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Dan Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu 226019, P. R. China
| | - Ruosong Wang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
12
|
Zhang B, Cheng Z, Wu Y, Chen L, Jing R, Cai X, Jiang C, Zhang YQ, Yuan A, Cui HH, Li ZY. Pseudo-mono-axial ligand fields that support high energy barriers in triangular dodecahedral Dy(iii) single-ion magnets. Chem Sci 2022; 13:13231-13240. [PMID: 36425507 PMCID: PMC9667924 DOI: 10.1039/d2sc03182e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/30/2022] [Indexed: 11/20/2024] Open
Abstract
The synthesis of air-stable, high-performance single-molecule magnets (SMMs) is of great significance for their practical applications. Indeed, Ln complexes with high coordination numbers are satisfactorily air stable. However, such geometries easily produce spherical ligand fields that minimize magnetic anisotropy. Herein, we report the preparation of three air-stable eight-coordinate mononuclear Dy(iii) complexes with triangular dodecahedral geometries, namely, [Dy(BPA-TPA)Cl](BPh4)2 (1) and [Dy(BPA-TPA)(X)](BPh4)2·nCH2Cl2 (X = CH3O- and n = 1 for 2; L = PhO- and n = 2 for 3), using a novel design concept in which the bulky heptadentate [2,6-bis[bis(2-pyridylmethyl)amino]methyl]-pyridine (BPA-TPA) ligand enwraps the Dy(iii) ion through weak coordinate bonds leaving only a small vacancy for a negatively charged (Cl-), methoxy (CH3O-) or phenoxy (PhO-) moiety to occupy. Magnetic measurements reveal that the single-molecule magnet (SMM) property of complex 1 is actually poor, as there is almost no energy barrier. However, complexes 2 and 3 exhibit fascinating SMM behavior with high energy barriers (U eff = 686 K for 2; 469 K for 3) and magnetic hysteresis temperatures up to 8 K, which is attributed to the pseudolinear ligand field generated by one strong, highly electrostatic Dy-O bond. Ab initio calculations were used to show the apparent difference in the magnetic dynamics of the three complexes, confirming that the pseudo-mono-axial ligand field has an important effect on high-performance SMMs compared with the local symmetry. This study not only presents the highest energy barrier for a triangular dodecahedral SMM but also highlights the enormous potential of the pseudolinear Dy-L ligand field for constructing promising SMMs.
Collapse
Affiliation(s)
- Ben Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Zhijie Cheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Yingying Wu
- School of Materials Science and Engineering, Nankai University 38 Tongyan Road, Haihe Educational Park Tianjin 300350 PR China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University Nanjing 210023 PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University Jiangsu 226019 PR China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University 38 Tongyan Road, Haihe Educational Park Tianjin 300350 PR China
| |
Collapse
|
13
|
Long J, Selikhov AN, Cherkasov AV, Nelyubina YV, Salles F, Guari Y, Larionova J, Trifonov AA. Base‐Free Alkoxide Dysprosium(III) Complexes with an Unusual Tetraphenylborate Coordination: Study of the Slow Relaxation of the Magnetization. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jérôme Long
- ICGM Univ. Montpellier CNRS ENSCM Montpellier France
- Institut Universitaire de France (IUF) 1 rue Descartes 75231 Paris Cedex 05 France
| | - Alexander N. Selikhov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
| | - Yulia V. Nelyubina
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| | | | - Yannick Guari
- ICGM Univ. Montpellier CNRS ENSCM Montpellier France
| | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| |
Collapse
|
14
|
Cai X, Cheng Z, Wu Y, Jing R, Tian SQ, Chen L, Li ZY, Zhang YQ, Cui HH, Yuan A. Tuning the Equatorial Negative Charge in Hexagonal Bipyramidal Dysprosium(III) Single-Ion Magnets to Improve the Magnetic Behavior. Inorg Chem 2022; 61:3664-3673. [PMID: 35171611 DOI: 10.1021/acs.inorgchem.1c03775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taking advantage of the pentaethylene glycol (EO5) and deprotonation of EO5, a family of new structurally hexagonal bipyramidal Dy(III) complexes, [Dy(EO5)(2,6-dichloro-4-nitro-PhO)2](2,6-dichloro-4-nitro-PhO) (1), [Dy(EO5-BPh2)(2,6-dichloro-4-nitro-PhO)2] (2), and [Dy(EO5-BPh2)(2,6-dichloro-4-nitro-PhO)Cl] (3), were controbllably synthesized and structurally characterized. Magnetic measurements show that complex 1 is a zero-field SIM and has an observable hysteresis opening up to 4 K. Conversely, only under extra magnetic field is slow magnetic relaxation observed in 2 and 3. This considerable difference in the magnetic behavior is mainly caused by the change of the equatorial negative charge. Detailed ab initio calculations further elucidate that the quantum tunneling is induced by the presence of equatorial negative charge, and the magnetic anisotropy depends on the axial ligands. This work demonstrates that the absence of the equatorial negative charge should also be considered in the rational design of promising single molecular magnets based on the oblate ions.
Collapse
Affiliation(s)
- Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Zhijie Cheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Yingying Wu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, P. R. China
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Shuang-Qin Tian
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu 226019, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| |
Collapse
|
15
|
Long J, Lyubov DM, Gurina GA, Nelyubina YV, Salles F, Guari Y, Larionova J, Trifonov AA. Using N-Heterocyclic Carbenes as Weak Equatorial Ligands to Design Single-Molecule Magnets: Zero-Field Slow Relaxation in Two Octahedral Dysprosium(III) Complexes. Inorg Chem 2022; 61:1264-1269. [PMID: 34994542 DOI: 10.1021/acs.inorgchem.1c03429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the synthesis, structures, and magnetic investigations of two new octahedral dysprosium complexes, based on the original N-heterocyclic carbene (NHC) tridentate bis(phenoxide) ligand, of the respective formulas mer-[DyL(THF)2Cl] (1) and mer-[DyL(THF)3][BPh4] (2), where L = 1,3-bis(3,5-di-tert-butyl-2-oxidophenyl)-5,5-dimethyl-3,4,5,6-tetrahydropyrimidin-1-ium chloride and THF = tetrahydrofuran. The short Dy-O distances in the axial direction in association with the weak donor ability of the NHC moiety provide a suitable environment for slow relaxation of magnetization, overcoming the previous single-molecule magnets based on NHC ligands.
Collapse
Affiliation(s)
- Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France.,Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Dmitry M Lyubov
- Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences (RAS), 28 Vavilova str., 119334 Moscow, Russia.,Institute of Organometallic Chemistry, Russian Academy of Sciences (RAS), 49 Tropinina str., GSP-445, 630950 Nizhny, Novgorod, Russia
| | - Galina A Gurina
- Institute of Organometallic Chemistry, Russian Academy of Sciences (RAS), 49 Tropinina str., GSP-445, 630950 Nizhny, Novgorod, Russia
| | - Yulia V Nelyubina
- Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences (RAS), 28 Vavilova str., 119334 Moscow, Russia
| | - Fabrice Salles
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | | | - Alexander A Trifonov
- Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences (RAS), 28 Vavilova str., 119334 Moscow, Russia.,Institute of Organometallic Chemistry, Russian Academy of Sciences (RAS), 49 Tropinina str., GSP-445, 630950 Nizhny, Novgorod, Russia
| |
Collapse
|
16
|
Long J, Lyubov DM, Kissel' AA, Gogolev IA, Tyutyunov AA, Nelyubina YV, Salles F, Guari Y, Cherkasov AV, Larionova J, Trifonov AA. Effect on the geometry over the slow relaxation of the magnetization in a series of erbium( iii) complexes based on halogenated ligands. CrystEngComm 2022. [DOI: 10.1039/d2ce00856d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Erbium(iii) complexes based on halogenated ligands.
Collapse
Affiliation(s)
- Jérôme Long
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Dmitry M. Lyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Alexander A. Kissel'
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Ilia A. Gogolev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Andrey A. Tyutyunov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Fabrice Salles
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
| | - Yannick Guari
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
| | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| |
Collapse
|
17
|
Castellanos E, Benner F, Demir S. Taming salophen in rare earth metallocene chemistry. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01331a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented series of salophen-bridged rare earth metallocenes, (Cp*2RE)2(μ-tBusalophen) (RE = Gd, Dy, and Y), has been crystallized. The solid and solution states have been unambiguously characterized by magnetic, spectroscopic and DFT methods.
Collapse
Affiliation(s)
- Ernesto Castellanos
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan, 48824, USA
| | - Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan, 48824, USA
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan, 48824, USA
| |
Collapse
|
18
|
Rasamsetty A, Mehta S, Ansari KU, Kumar P, Mondal A, Shanmugam M. Six-coordinated dinuclear lanthanide(III) amide complexes: investigation of magnetization relaxation dynamics and their electronic structures. Dalton Trans 2021; 51:63-68. [PMID: 34889328 DOI: 10.1039/d1dt03708k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of rare six-coordinated dinuclear Ln(III) complexes [Ln2(μ-Cl)2Cl4Li2(L)2(THF)6] were structurally characterized using a bulky amide ligand (L; Ln = Gd(1), Dy(2) and Y(3)). Detailed magnetic studies disclose that a weak antiferromagnetic coupling exists within 1 (-0.09 cm-1) and 2 (-0.07 cm-1; -2J Hamiltonian). Additionally, this study unveils the importance of the amide ligand at the coordination site of Dy(III), which manifests a slow relaxation of magnetization in the absence of an external magnetic field. This has been rationalized by detailed ab initio calculations as well as the electronic structure determination of 1 and 2.
Collapse
Affiliation(s)
- Amaleswari Rasamsetty
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Kamal Uddin Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Pardeep Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| |
Collapse
|
19
|
Hu JJ, Peng Y, Liu SJ, Wen HR. Recent advances in lanthanide coordination polymers and clusters with magnetocaloric effect or single-molecule magnet behavior. Dalton Trans 2021; 50:15473-15487. [PMID: 34668916 DOI: 10.1039/d1dt02797b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular magnetorefrigerant materials for low-temperature magnetic refrigeration and single-molecule magnets for high-density information storage and quantum computing have received extensive attention from chemists and magnetic experts. Lanthanide ions with unique magnetic properties have always been considered as ideal candidates for the construction of such materials. This frontier article focuses on GdIII-based molecular magnetorefrigerants and lanthanide-based single-molecule magnets and highlights the most significant advances.
Collapse
Affiliation(s)
- Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
20
|
Zhu D, Wang M, Guo L, Shi W, Li J, Cui C. Synthesis, Structure, and Magnetic Properties of Rare-Earth Benzoborole Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dezhao Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Mengmeng Wang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Lulu Guo
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
21
|
Long J, Selikhov AN, Rad'kova NY, Cherkasov AV, Guari Y, Larionova J, Trifonov AA. Synthesis, Structures and Magnetic Properties of two Heteroleptic Dy
3+
Borohydride Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jérôme Long
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | - Alexander N. Selikhov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| | - Natalia Yu. Rad'kova
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
| | - Yannick Guari
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences 49 Tropinina str., GSP-445 630950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences 28 Vavilova str. 119334 Moscow Russia
| |
Collapse
|
22
|
General Meeting of the Department of Chemistry and Materials Science of the Russian Academy of Sciences. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Zhu Z, Zhao C, Feng T, Liu X, Ying X, Li XL, Zhang YQ, Tang J. Air-Stable Chiral Single-Molecule Magnets with Record Anisotropy Barrier Exceeding 1800 K. J Am Chem Soc 2021; 143:10077-10082. [PMID: 34181405 DOI: 10.1021/jacs.1c05279] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Design and synthesis of air-stable and easily tailored high-performance single-molecule magnets (SMMs) are of great significance toward the implementation of SMMs in molecular-based magneto-electronic devices. Here, by introducing electron-withdrawing fluorinated substituents on equatorial ligand, two chiral Dy(III) macrocyclic complexes, RRRR-Dy-D6hF12 (1) and SSSS-Dy-D6hF12 (2), with a record anisotropy barrier exceeding 1800 K and the longest relaxation time approaching 2500 s at 2.0 K for all known air-stable SMMs, were obtained. The nearly perfect axiality of the ground Kramers doublet (KD) enables the open hysteresis loops up to 20 K in the magnetically diluted sample. It is notable that they are structurally rigid with high thermal stability and the apical ligand can be tailored to carry proper surface-binding groups. This finding not only improves the magnetic properties for air-stable SMMs but also provides a new avenue for deposition of SMMs on surfaces.
Collapse
Affiliation(s)
- Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tingting Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaodong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xu Ying
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
24
|
Parmar VS, Mills DP, Winpenny REP. Mononuclear Dysprosium Alkoxide and Aryloxide Single-Molecule Magnets. Chemistry 2021; 27:7625-7645. [PMID: 33555090 PMCID: PMC8252031 DOI: 10.1002/chem.202100085] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Recent studies have shown that mononuclear lanthanide (Ln) complexes can be high‐performing single‐molecule magnets (SMMs). Recently, there has been an influx of mononuclear Ln alkoxide and aryloxide SMMs, which have provided the necessary geometrical control to improve SMM properties and to allow the intricate relaxation dynamics of Ln SMMs to be studied in detail. Here non‐aqueous Ln alkoxide and aryloxide chemistry applied to the synthesis of low‐coordinate mononuclear Ln SMMs are reviewed. The focus is on mononuclear DyIII alkoxide and aryloxide SMMs with coordination numbers up to eight, covering synthesis, solid‐state structures and magnetic attributes. Brief overviews are also provided of mononuclear TbIII, HoIII, ErIII and YbIII alkoxide and aryloxide SMMs.
Collapse
Affiliation(s)
- Vijay S Parmar
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David P Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard E P Winpenny
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
25
|
Thomas-Hargreaves LR, Giansiracusa MJ, Gregson M, Zanda E, O'Donnell F, Wooles AJ, Chilton NF, Liddle ST. Correlating axial and equatorial ligand field effects to the single-molecule magnet performances of a family of dysprosium bis-methanediide complexes. Chem Sci 2021; 12:3911-3920. [PMID: 34163660 PMCID: PMC8179472 DOI: 10.1039/d1sc00238d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Treatment of the new methanediide-methanide complex [Dy(SCS)(SCSH)(THF)] (1Dy, SCS = {C(PPh2S)2}2-) with alkali metal alkyls and auxillary ethers produces the bis-methanediide complexes [Dy(SCS)2][Dy(SCS)2(K(DME)2)2] (2Dy), [Dy(SCS)2][Na(DME)3] (3Dy) and [Dy(SCS)2][K(2,2,2-cryptand)] (4Dy). For further comparisons, the bis-methanediide complex [Dy(NCN)2][K(DB18C6)(THF)(toluene)] (5Dy, NCN = {C(PPh2NSiMe3)2}2-, DB18C6 = dibenzo-18-crown-6 ether) was prepared. Magnetic susceptibility experiments reveal slow relaxation of the magnetisation for 2Dy-5Dy, with open magnetic hysteresis up to 14, 12, 15, and 12 K, respectively (∼14 Oe s-1). Fitting the alternating current magnetic susceptibility data for 2Dy-5Dy gives energy barriers to magnetic relaxation (U eff) of 1069(129)/1160(21), 1015(32), 1109(70), and 757(39) K, respectively, thus 2Dy-4Dy join a privileged group of SMMs with U eff values of ∼1000 K and greater with magnetic hysteresis at temperatures >10 K. These structurally similar Dy-components permit systematic correlation of the effects of axial and equatorial ligand fields on single-molecule magnet performance. For 2Dy-4Dy, the Dy-components can be grouped into 2Dy-cation/4Dy and 2Dy-anion/3Dy, where the former have almost linear C[double bond, length as m-dash]Dy[double bond, length as m-dash]C units with short average Dy[double bond, length as m-dash]C distances, and the latter have more bent C[double bond, length as m-dash]Dy[double bond, length as m-dash]C units with longer average Dy[double bond, length as m-dash]C bonds. Both U eff and hysteresis temperature are superior for the former pair compared to the latter pair as predicted, supporting the hypothesis that a more linear axial ligand field with shorter M-L distances produces enhanced SMM properties. Comparison with 5Dy demonstrates unusually clear-cut examples of: (i) weakening the equatorial ligand field results in enhancement of the SMM performance of a monometallic system; (ii) a positive correlation between U eff barrier and axial linearity in structurally comparable systems.
Collapse
Affiliation(s)
| | - Marcus J Giansiracusa
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Emanuele Zanda
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Felix O'Donnell
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
26
|
Long J, Tolpygin AO, Lyubov DM, Rad'kova NY, Cherkasov AV, Nelyubina YV, Guari Y, Larionova J, Trifonov AA. High magnetization reversal barriers in luminescent dysprosium octahedral and pentagonal bipyramidal single-molecule magnets based on fluorinated alkoxide ligands. Dalton Trans 2021; 50:8487-8496. [PMID: 34047741 DOI: 10.1039/d1dt01319j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis and structures of three luminescent dysprosium(iii) complexes based on fluorinated alkoxide ligands of formulas [Dy(L1)2(THF)4][BPh4]·0.5THF (1), [Dy(L2)2(THF)5][BPh4]·2.5THF (2) and [Dy(L3)2(THF)5][BPh4]·2THF (3) (L1 = (CF3)3CO-, L2 = C6F5C6F4O-, L3 = C6F5C(CH3)O-). Despite the different dysprosium ion geometries (octahedral vs. distorted pentagonal bipyramidal), these systems exhibit a single-molecule magnet (SMM) behavior, but with distinct relaxation dynamics. Moreover, a typical dysprosium-based luminescence is observed for the three complexes, which make them bifunctional magneto-luminescent SMMs. Remarkably, complex 3 exhibits a high anisotropy barrier of 1469 cm-1 and a blocking temperature of 22 K, making it one of the most performant alkoxide-based SMMs with the highest blocking temperature for a luminescent SMM.
Collapse
Affiliation(s)
- Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Aleksei O Tolpygin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia. and A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia
| | - Dmitry M Lyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia. and A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia
| | - Natalia Yu Rad'kova
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia.
| | - Anton V Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia.
| | - Yulia V Nelyubina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Alexander A Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia. and A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia
| |
Collapse
|
27
|
Long J, Tolpygin AO, Cherkasov AV, Nelyubina YV, Guari Y, Larionova J, Trifonov AA. Tuning the coordination sphere of octahedral Dy( iii) complexes with silanolate/stannanolate ligands: synthesis, structures and slow relaxation of the magnetization. CrystEngComm 2021. [DOI: 10.1039/d1ce01266e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports four SMMs based on silanolate or stannanolate ligands cis-[Dy(OSiPh3)2(THF)4][BPh4]·THF·C6H6 (1), cis-[Dy(OSnPh3)2(THF)4][BPh4]·THF·C6H6·C6H14 (2), fac-[Dy(OSiPh3)3(THF)3]·THF (3) and fac-[Dy(OSiPh3)3(bipy)(THF)]·THF (4).
Collapse
Affiliation(s)
- Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Aleksei O. Tolpygin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N.Nesmeyanov.Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
| | - Yulia V. Nelyubina
- A.N.Nesmeyanov.Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N.Nesmeyanov.Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| |
Collapse
|
28
|
Chen P, Sun X, Guo X, Liu D, Liu HT, Lu J, Tian H. A quasilinear hydrazone-based mononuclear dysprosium compound with C4v symmetry exhibiting field-induced complex magnetic relaxation. NEW J CHEM 2021. [DOI: 10.1039/d1nj04620a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C4v symmetrical mononuclear dysprosium(iii) compound has been successfully isolated using a new quasilinear single pyrazinyl hydrazone ligand. Single-ion behavior and the short-range intermolecular magnetic dipolar interaction are essential to the complex magnetic relaxation.
Collapse
Affiliation(s)
- Peiqiong Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xuefeng Guo
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| | - Dan Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
29
|
Chen BY, Tsai MY, Su YC, Lin PH, Long J. Synthesis, structures and magnetic properties of dysprosium( iii) complexes based on amino-bis(benzotriazole phenolate) and nitrophenolates: influence over the slow relaxation of the magnetization. CrystEngComm 2021. [DOI: 10.1039/d1ce00909e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Field-induced slow relaxation in dysprosium amino-bis(benzotriazole) phenolate complexes.
Collapse
Affiliation(s)
- Bo-Yi Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Yem Tsai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Po-Heng Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Jérôme Long
- Univ. Montpellier, CNRS, ENSCM, ICGM, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|