1
|
Lin R, Scherschel NF, Zeller M, Hamlin SG, Snyder M, Son S, Ramachandran PV, Piercey DG. Synthesis and Energetic Characterization of Borane-Amines on High-Nitrogen Heterocycles. ACS OMEGA 2024; 9:14241-14248. [PMID: 38559918 PMCID: PMC10976356 DOI: 10.1021/acsomega.3c09934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Borane-amines have garnered attention over the last several decades in a variety of applications, ranging from hydrogen storage materials to hypergolic fuel systems. An investigation into the synthesis of borane-amines with high-nitrogen content heterocycles was undertaken in this work. Borane-amines were formed by the reaction of BH3·Me2S in tetrahydrofuran (THF) with the requisite nitrogen-containing heterocycle and isolated by placing the crude reaction mixture in hexanes to precipitate the product. X-ray crystallography, thermogravimetric analysis (TGA), high resolution mass spectroscopy (HRMS), 1H NMR, 13C NMR, and 11B NMR were utilized for product characterization, while impact and friction sensitivity testing were conducted to identify sensitivity in the synthesized compounds. Most isolated borane-amines, except one, were found to decompose in the atmosphere and were more sensitive to mechanical stimuli than their starting materials; however, all synthesized compounds were found to be hypergolic in the presence of white fuming nitric acid (WFNA).
Collapse
Affiliation(s)
- Randy Lin
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Nicholas F. Scherschel
- School
of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, Indiana 47907, United States
- Purdue
Energetics Research Center, Purdue University, 205 Gates Road, West Lafayette, Indiana 47906, United States
| | - Matthias Zeller
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Stephen G. Hamlin
- School
of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
- Purdue
Energetics Research Center, Purdue University, 205 Gates Road, West Lafayette, Indiana 47906, United States
| | - Madison Snyder
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Steven Son
- School
of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
- Purdue
Energetics Research Center, Purdue University, 205 Gates Road, West Lafayette, Indiana 47906, United States
| | - P. Veeraraghavan Ramachandran
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Purdue
Energetics Research Center, Purdue University, 205 Gates Road, West Lafayette, Indiana 47906, United States
| | - Davin G. Piercey
- School
of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, Indiana 47907, United States
- School
of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
- Purdue
Energetics Research Center, Purdue University, 205 Gates Road, West Lafayette, Indiana 47906, United States
| |
Collapse
|
2
|
Dingra N, Witty M, Celis M, Boppana N, Ayudhya T. Transformation of struvite from wastewater to a hydrogen fuel storage compound ammonia borane. Front Chem 2023; 11:1269845. [PMID: 38025081 PMCID: PMC10662098 DOI: 10.3389/fchem.2023.1269845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Ammonia borane (NH3BH3) is a carrier of hydrogen gas that is known as a carbon-free renewable energy source. A high hydrogen content of ammonia borane and its stability in air at ambient temperatures make it a valuable molecule for its potential use as a hydrogen storage compound. In this study, we investigate a new approach for synthesizing ammonia borane using wastewater-derived ammonia source. Wastewater recycling has always been a global interest towards sustainability. In addition to reclaiming the water, recycling nutrients in wastewater is a topic of interest. Nutrients such as nitrogen, magnesium, and phosphorous are readily recovered from wastewater as struvite (NH4MgPO4·6H2O). This new process involves converting urine into struvite, and then reacting struvite with alkali borohydrides to produce a high-purity ammonia borane. The use of mild reaction conditions without extensive purification process, together with high purity ammonia borane product make this process a desirable course of action for recycling the nitrogen waste. In the course of moving towards a sustainable environment, the energy and wastewater industries will benefit from this combined process of nitrogen removal from wastewater to generate a renewable carbon-free energy molecule.
Collapse
Affiliation(s)
- Nin Dingra
- Department of Chemistry, University of Texas Permian Basin, Odessa, TX, United States
| | - Michael Witty
- School of Pure and Applied Sciences, Florida SouthWestern State College, Fort Myers, FL, United States
| | - Marie Celis
- Department of Chemistry, University of Texas Permian Basin, Odessa, TX, United States
| | - Narendra Boppana
- Department of Chemical Engineering, University of Texas Permian Basin, Odessa, TX, United States
| | - Theppawut Ayudhya
- Department of Chemistry, University of Texas Permian Basin, Odessa, TX, United States
| |
Collapse
|
3
|
Comanescu C. Paving the Way to the Fuel of the Future-Nanostructured Complex Hydrides. Int J Mol Sci 2022; 24:143. [PMID: 36613588 PMCID: PMC9820751 DOI: 10.3390/ijms24010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hydrides have emerged as strong candidates for energy storage applications and their study has attracted wide interest in both the academic and industry sectors. With clear advantages due to the solid-state storage of hydrogen, hydrides and in particular complex hydrides have the ability to tackle environmental pollution by offering the alternative of a clean energy source: hydrogen. However, several drawbacks have detracted this material from going mainstream, and some of these shortcomings have been addressed by nanostructuring/nanoconfinement strategies. With the enhancement of thermodynamic and/or kinetic behavior, nanosized complex hydrides (borohydrides and alanates) have recently conquered new estate in the hydrogen storage field. The current review aims to present the most recent results, many of which illustrate the feasibility of using complex hydrides for the generation of molecular hydrogen in conditions suitable for vehicular and stationary applications. Nanostructuring strategies, either in the pristine or nanoconfined state, coupled with a proper catalyst and the choice of host material can potentially yield a robust nanocomposite to reliably produce H2 in a reversible manner. The key element to tackle for current and future research efforts remains the reproducible means to store H2, which will build up towards a viable hydrogen economy goal. The most recent trends and future prospects will be presented herein.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, 405A Atomiștilor Str., 77125 Magurele, Romania;
- Faculty of Physics, University of Bucharest, 405, Atomiștilor Str., 77125 Magurele, Romania
| |
Collapse
|
4
|
Baum Z, Diaz LL, Konovalova T, Zhou QA. Materials Research Directions Toward a Green Hydrogen Economy: A Review. ACS OMEGA 2022; 7:32908-32935. [PMID: 36157740 PMCID: PMC9494439 DOI: 10.1021/acsomega.2c03996] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 05/06/2023]
Abstract
A constellation of technologies has been researched with an eye toward enabling a hydrogen economy. Within the research fields of hydrogen production, storage, and utilization in fuel cells, various classes of materials have been developed that target higher efficiencies and utility. This Review examines recent progress in these research fields from the years 2011-2021, exploring the most commonly occurring concepts and the materials directions important to each field. Particular attention has been given to catalyst materials that enable the green production of hydrogen from water, chemical and physical storage systems, and materials used in technical capacities within fuel cells. The quantification of publication and materials trends provides a picture of the current state of development within each node of the hydrogen economy.
Collapse
|
5
|
Comanescu C. Recent Development in Nanoconfined Hydrides for Energy Storage. Int J Mol Sci 2022; 23:7111. [PMID: 35806115 PMCID: PMC9267122 DOI: 10.3390/ijms23137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen is the ultimate vector for a carbon-free, sustainable green-energy. While being the most promising candidate to serve this purpose, hydrogen inherits a series of characteristics making it particularly difficult to handle, store, transport and use in a safe manner. The researchers' attention has thus shifted to storing hydrogen in its more manageable forms: the light metal hydrides and related derivatives (ammonia-borane, tetrahydridoborates/borohydrides, tetrahydridoaluminates/alanates or reactive hydride composites). Even then, the thermodynamic and kinetic behavior faces either too high energy barriers or sluggish kinetics (or both), and an efficient tool to overcome these issues is through nanoconfinement. Nanoconfined energy storage materials are the current state-of-the-art approach regarding hydrogen storage field, and the current review aims to summarize the most recent progress in this intriguing field. The latest reviews concerning H2 production and storage are discussed, and the shift from bulk to nanomaterials is described in the context of physical and chemical aspects of nanoconfinement effects in the obtained nanocomposites. The types of hosts used for hydrogen materials are divided in classes of substances, the mean of hydride inclusion in said hosts and the classes of hydrogen storage materials are presented with their most recent trends and future prospects.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1 Polizu St., 011061 Bucharest, Romania
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Magurele, Romania
| |
Collapse
|
6
|
Huang YY, Ji LX, He ZH, Ji GF. Enhanced Effect of an External Electric Field on NH 3BH 3 Dehydrogenation: an AIMD Study for Thermolysis. ACS OMEGA 2022; 7:21255-21261. [PMID: 35755330 PMCID: PMC9219047 DOI: 10.1021/acsomega.2c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
How to improve the dehydrogenation properties of ammonia borane (AB, NH3BH3) is always a challenge for its practical application in hydrogen storage. In this study, we reveal the enhanced effect of an external electric field (E ext) on AB dehydrogenation by means of the ab initio molecular dynamics method. The molecular rotation induced by an electrostatic force can facilitate the formation of the H-N···B-H framework, which would aggregate into poly-BN species and further suppress the generation of the volatile byproducts. Meanwhile, the dihydrogen bond (N-Hδ+···δ-H-B) is favorably formed under E ext, and the interaction between relevant H atoms is enhanced, leading to a faster H2 liberation. Correspondingly, the apparent activation energy for AB dissociation is greatly reduced from 18.42 to around 15 kcal·mol-1 with the application of an electric field, while that for H2 formation decreases from 20.4 to about 16 kcal·mol-1. In the whole process, the cleavage of the B-H bond is more favorable than that of the N-H bond, no matter whether the application of E ext. Our results give a deep insight into a positive effect of an electric field on AB dehydrogenation, which would provide an important inspiration for hydrogen storage in industry applications.
Collapse
Affiliation(s)
- Yao-Yao Huang
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of
Fluid Physics, China Academy of Engineering
Physics, Mianyang 621900 Sichuan, China
| | - Lin-Xiang Ji
- Department
of Physics and Engineering Physics, University
of Saskatchewan, Saskatoon, Saskatchewan S7N5E2, Canada
| | - Zheng-Hua He
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of
Fluid Physics, China Academy of Engineering
Physics, Mianyang 621900 Sichuan, China
| | - Guang-Fu Ji
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of
Fluid Physics, China Academy of Engineering
Physics, Mianyang 621900 Sichuan, China
| |
Collapse
|
7
|
Bhattacharjee I, Sultana M, Bhunya S, Paul A. The curious saga of dehydrogenation/hydrogenation for chemical hydrogen storage: a mechanistic perspective. Chem Commun (Camb) 2022; 58:1672-1684. [PMID: 35024699 DOI: 10.1039/d1cc06238g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen storage is an indispensable component of hydrogen-based fuel economy. Chemical hydrogen storage relies on the development of lightweight compounds which can deliver high weight percentage of H2 at moderate temperatures through dehydrogenation and can be recovered from the dehydrogenated mass by hydrogenation for reuse. In this feature article we primarily discuss the mechanistic underpinnings of the catalytic dehydrogenation of ammonia-borane, a potential candidate for hydrogen storage and the challenges associated with its regeneration from the dehydrogenated mass. Moreover, we highlight the mechanistic intricacies, viability, sustainability and unresolved issues of allied chemical hydrogen storage avenues such as the CH3OH-CO2 cycle.
Collapse
Affiliation(s)
| | - Munia Sultana
- Indian Association for the Cultivation of Science, Kolkata, India.
| | - Sourav Bhunya
- Indian Association for the Cultivation of Science, Kolkata, India.
| | - Ankan Paul
- Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
8
|
Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances. ENERGIES 2021. [DOI: 10.3390/en14217003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Boron-based materials have been widely studied for hydrogen storage applications. Examples of these compounds are borohydrides and boranes. However, all of these present some disadvantages that have hindered their potential application as hydrogen storage materials in the solid-state. Thus, different strategies have been developed to improve the dehydrogenation properties of these materials. The purpose of this review is to provide an overview of recent advances (for the period 2015–2021) in the destabilization strategies that have been considered for selected boron-based compounds. With this aim, we selected seven of the most investigated boron-based compounds for hydrogen storage applications: lithium borohydride, sodium borohydride, magnesium borohydride, calcium borohydride, ammonia borane, hydrazine borane and hydrazine bisborane. The destabilization strategies include the use of additives, the chemical modification and the nanosizing of these compounds. These approaches were analyzed for each one of the selected boron-based compounds and these are discussed in the present review.
Collapse
|
9
|
Giustra ZX, Chen G, Vasiliu M, Karkamkar A, Autrey T, Dixon DA, Liu SY. A comparison of hydrogen release kinetics from 5- and 6-membered 1,2-BN-cycloalkanes. RSC Adv 2021; 11:34132-34136. [PMID: 35497319 PMCID: PMC9042405 DOI: 10.1039/d1ra07477f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
The reaction order and Arrhenius activation parameters for spontaneous hydrogen release from cyclic amine boranes, i.e., BN-cycloalkanes, were determined for 1,2-BN-cyclohexane (1) and 3-methyl-1,2-BN-cyclopentane (2) in tetraglyme. Computational analysis identified a mechanism involving catalytic substrate activation by a ring-opened form of 1 or 2 as being consistent with experimental observations. The reaction order and Arrhenius activation parameters for spontaneous hydrogen release from cyclic amine boranes, i.e., BN-cycloalkanes, were determined for 1,2-BN-cyclohexane (1) and 3-methyl-1,2-BN-cyclopentane (2) in tetraglyme.![]()
Collapse
Affiliation(s)
- Zachary X. Giustra
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, USA
| | - Gang Chen
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, USA
| | - Monica Vasiliu
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0036, USA
| | - Abhijeet Karkamkar
- Pacific Northwest National Laboratories, Richland, Washington 99353, USA
| | - Tom Autrey
- Pacific Northwest National Laboratories, Richland, Washington 99353, USA
| | - David A. Dixon
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0036, USA
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, USA
| |
Collapse
|