1
|
Tang W, Fan P. Nickel-Catalyzed Cross-Electrophile Ring Opening/ gem-Difluoroallylation of Aziridines. Org Lett 2023; 25:5756-5761. [PMID: 37503939 DOI: 10.1021/acs.orglett.3c01973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Herein we report a nickel-catalyzed regioselective cross-electrophile ring opening reaction of sulfonyl-protected aziridines with trifluoromethyl-substituted alkenes as the gem-difluoroallylating agents, providing a new and efficient entry to prepare gem-difluorobishomoallylic sulfonamides. Moreover, the scaffold of 6-fluoro-1,2,3,4-tetrahydropyridine can be constructed starting from the ring opening products via NaH-mediated intramolecular defluorinative nucleophilic vinylic substitution.
Collapse
Affiliation(s)
- Wei Tang
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
He H, Liu J, Wang T, Guo L, Zhang W, Chen X. Chemo- and regioselectivities of the TBAF-catalyzed C F bond allylation of trifluoromethylalkenes: A theoretical view. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Dong H, Lin Z, Wang C. Cobalt‐Catalyzed Allylic Defluorinative Cross‐Electrophile Coupling between 1,1‐Difluoroalkyl Halides and α‐Trifluoromethyl Styrenes. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Haiyan Dong
- Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China Hefei Anhui 230026 People's Republic of China
| | - Zhiyang Lin
- Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China Hefei Anhui 230026 People's Republic of China
| | - Chuan Wang
- Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China Hefei Anhui 230026 People's Republic of China
| |
Collapse
|
4
|
Li H, Zhu C. Defluorinative Esterification and 1,3-Dietherification of (Trifluoromethyl)alkenes with Alcohols: Controlled Synthesis of α-Arylacrylates and 1,3-Diethers. J Org Chem 2023; 88:4134-4144. [PMID: 36912630 DOI: 10.1021/acs.joc.2c02568] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Purification-controlled defluorinative esterification and 1,3-dietherification of (trifluoromethyl)alkenes with alcohols are achieved, delivering various useful α-arylacrylates and 1,3-diethers in high yields. Remarkably, this reaction enables the cleavage of three C-F bonds in a CF3 group, and it is transition-metal free and catalyst-free, has simple operation, features mild conditions, is gram-scalable, and has broad substrate scope and valuable functional group tolerance. Mechanism studies indicated that the isolated monofluoroalkene-decorated 1,3-diethers are the intermediates, and the acidic property of silica gel assisted the defluorinative transformation of these 1,3-diethers to access α-arylacrylates with H2O as the oxygen source.
Collapse
Affiliation(s)
- Hengyuan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuanle Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
5
|
Zhang G, Wang L, Cui L, Gao P, Chen F. Deaminative defluoroalkylation of α-trifluoromethylalkenes enabled by photoredox catalysis. Org Biomol Chem 2023; 21:294-299. [PMID: 36510767 DOI: 10.1039/d2ob02114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we disclose a new photoredox-catalysed strategy to access gem-difluoroallylarenes from α-trifluoromethylalkenes with sterically hindered primary amines via C-N and C-F bond activation. This deaminative and defluorinative allylation is generally compatible with diverse functional groups and sterically hindered α-3° and 2° primary amines.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Liping Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| |
Collapse
|
6
|
Zhang J, Ma ZG, Tian Y, Li W, Gao WC, Chang HH. Divergent Synthesis of Fluorinated Alkenes, Allenes, and Enynes via Reaction of 2-Trifluoromethyl-1,3-enynes with Carbon Nucleophiles. J Org Chem 2022; 87:15086-15100. [PMID: 36314871 DOI: 10.1021/acs.joc.2c01580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Herein, inorganic base K3PO4 promoted divergent synthesis of CF3-substituted allenes, cyclopentenes, alkynes, and fluorinated enynes via regioselective nucleophilic addition of carbon nucleophiles to 2-trifluoromethyl-1,3-enynes was developed. With the choice of different carbon nucleophiles, various fluorinated compounds could be obtained under K3PO4/DMF reaction system. When malononitriles were used as nucleophiles, CF3-substituted allenes, cyclopentenes, and alkynes could be obtained, respectively. By using 1,3-dicarbonyl compounds as nucleophiles, ring-monofluorinated 4H-pyrans could be prepared, and 1,1-difluoro-1,3-enynes could be furnished with the participation of diethyl malonate. Moreover, these five kinds of fluorinated allenes, alkenes, and enynes are valuable building blocks.
Collapse
Affiliation(s)
- Juan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhi-Guang Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yu Tian
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wei Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hong-Hong Chang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.,Shanxi Tihondan Pharmaceutical Technology Co. Ltd., Jinzhong 030600, China
| |
Collapse
|
7
|
Xu P, Daniliuc CG, Bergander K, Stein C, Studer A. Synthesis of Five-Membered Ring Systems Bearing gem-Difluoroalkenyl and Monofluoroalkenyl Substituents via Radical β-Bromo Fragmentation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Xu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Colin Stein
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, Münster 48149, Germany
| |
Collapse
|
8
|
Ma T, Li X, Ping Y, Kong W. Synthesis of
gem
‐Difluoroalkenes
via
Ni‐Catalyzed Three‐Component
Defluorinative Reductive
Cross‐Coupling
of Organohalides, Alkenes and Trifluoromethyl Alkenes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Teng Ma
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Xiao Li
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Yuanyuan Ping
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| |
Collapse
|
9
|
Gao Y, Qin W, Tian M, Zhao X, Hu X. Defluorinative Alkylation of Trifluoromethyl Alkenes with Soft Carbon Nucleophiles Enabled by a Catalytic Amount of Base. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ya Gao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Wei Qin
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Ming‐Qing Tian
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Xuefei Zhao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Xu‐Hong Hu
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| |
Collapse
|
10
|
Zhang C, Wang L, Shi H, Lin Z, Wang C. Iron-Catalyzed Allylic Defluorinative Ketone Olefin Coupling. Org Lett 2022; 24:3211-3216. [PMID: 35481351 DOI: 10.1021/acs.orglett.2c00979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this protocol, we demonstrate our discovery that iron is able to efficiently catalyze the reductive allylic defluorinative ketyl olefin coupling reaction between α-trifluoromethyl alkenes and unactivated ketones. This operationally simple cross-electrophile reaction circumvents the use of pre-generated organometallics and allows for the synthesis of diverse functional-group-rich tertiary gem-difluorohomoallylic alcohols through a polarity-reversed strategy. Preliminary mechanistic studies support a mechanism that proceeds through a ketyl formation/olefin insertion/β-fluoro elimination sequence.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongzhang Shi
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhiyang Lin
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
11
|
Xu J, Liu J, Chen G, Xiong B, Zhang X, Lian Z. Palladium-catalysed difluoroolefination of benzyl tosylates toward the synthesis of gem-difluoro-2-trifluromethyl styrene derivatives. RSC Adv 2022; 12:12983-12987. [PMID: 35497019 PMCID: PMC9049850 DOI: 10.1039/d2ra02473j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
We have presented an efficient method to access gem-difluoro-2-trifluromethyl styrene derivatives via palladium catalysis. This method features mild reaction conditions, broad substrate scope and good product yields. Moreover, gram–scale reactions demonstrated the robustness and potential of this method. Control experiments revealed that the –CF3 group was essential to the success of this transformation. Finally, the practicality of this method was successfully proven by three synthetic applications. We presented an efficient method to access gem-difluoro-2-trifluromethyl styrene derivatives via palladium catalysis, which features mild reaction conditions and broad substrate scope.![]()
Collapse
Affiliation(s)
- Jie Xu
- West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Jiangjun Liu
- West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Gang Chen
- West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu 610041 China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu 610041 China
| | - Zhong Lian
- West China School of Pharmacy, Sichuan University Chengdu 610041 China.,Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu 610041 China
| |
Collapse
|
12
|
|
13
|
Xiao J, Montgomery J. Nickel-Catalyzed Defluorinative Coupling of Aliphatic Aldehydes with Trifluoromethyl Alkenes. ACS Catal 2022; 12:2463-2471. [PMID: 35992737 PMCID: PMC9390876 DOI: 10.1021/acscatal.1c05801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A simple procedure is reported for the nickel-catalyzed defluorinative alkylation of unactivated aliphatic aldehydes. The process involves the catalytic reductive union of trifluoromethyl alkenes with aldehydes using a nickel complex of a 6,6'-disubstituted bipyridine ligand with zinc metal as the terminal reductant. The protocol is distinguished by its broad substrate scope, mild conditions, and simple catalytic setup. Reaction outcomes are consistent with the intermediacy of an α-silyloxy(alkyl)nickel intermediate generated by a low-valent nickel catalyst, silyl electrophile, and the aldehyde substrate. Mechanistic findings with cyclopropanecarboxaldehyde provide insights into nature of the reactive intermediates and illustrate fundamental reactivity differences that are governed by subtle changes in ligand and substrate structure.
Collapse
Affiliation(s)
| | - John Montgomery
- Corresponding authors: John Montgomery - Department of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109-1055, USA,
| |
Collapse
|
14
|
Luo X, Wang S, Lei A. Electrochemical‐induced hydroxysulfonylation of α‐CF3 alkenes to access tertiary β‐hydroxysulfones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Yan S, Yu W, Zhang J, Fan H, Lu Z, Zhang Z, Wang T. Access to gem-Difluoroalkenes via Organic Photoredox-Catalyzed gem-Difluoroallylation of Alkyl Iodides. J Org Chem 2022; 87:1574-1584. [PMID: 34964644 DOI: 10.1021/acs.joc.1c02659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An organic photoredox-catalyzed gem-difluoroallylation of α-trifluoromethyl alkenes with alkyl iodides via C-F bond cleavage for the synthesis of gem-difluoroalkene derivatives is reported. This transition-metal-free transformation utilized a readily available organic dye 4CzIPN as the sole photocatalyst and employed a common chemical N,N,N',N'-tetramethylethylenediamine as the radical activator of alkyl iodides via halogen-atom transfer. In addition, a variety of iodides, including primary, secondary, and tertiary alkyl iodides, were tolerated and provided good to high yields.
Collapse
Affiliation(s)
- Songlin Yan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Weijie Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Jianye Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Hongmei Fan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Zhifeng Lu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Zhenming Zhang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| |
Collapse
|
16
|
Xiong B, Li Y, Zhang J, Liu J, Zhang X, Lian Z. Cross‐Electrophile Coupling between Aryl/Vinyl Triflates and Vinyl Tosylates for the Synthesis of gem‐Difluoroalkenes via Ni/Pd Cooperative Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Yue Li
- Sichuan University West China Hospital CHINA
| | - Jinyu Zhang
- Sichuan University West China Hospital CHINA
| | | | | | - Zhong Lian
- Sichuan University West China Hospital CHINA
| |
Collapse
|
17
|
Gates AM, Jos S, Santos WL. Ligand-free copper-catalyzed borylative defluorination: access to gem-difluoroallyl boronic acid derivatives. Org Biomol Chem 2022; 20:366-374. [PMID: 34605836 DOI: 10.1039/d1ob01533h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a ligand-free copper-catalyzed β-borylation, defluorination of β-substituted, α-trifluoromethyl-α,β-unsaturated esters. The reaction affords geminal-difluoroallyl boronic acid derivatives in moderate to good yield. The reaction was tolerant of various substrates, and the utility of products was demonstrated in the defluorinative functionalization of the difluoroalkene to afford enol ethers.
Collapse
Affiliation(s)
- Ashley M Gates
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Swetha Jos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
18
|
Li C, Li H, Yao G, Liang X, Zhao C, Xu H, Jiang H, Zhu C. Chemo- and regioselective defluorinative annulation of (trifluoromethyl)alkenes with pyrazolones: synthesis and insecticidal activity of 6-fluoro-1,4-dihydropyrano[2,3- c]pyrazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00786j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemo- and regioselective defluorinative [3 + 3] annulation of (trifluoromethyl)alkenes and pyrazolones gives useful 6-fluoro-1,4-dihydropyrano[2,3-c]pyrazoles.
Collapse
Affiliation(s)
- Chengxi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Hengyuan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Guangkai Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xianghui Liang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Chen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
19
|
Chang Z, Wang J, Lu X, Fu Y. Synthesis of gem-Difluoroalkenes through Nickel-Promoted Electrochemical Reductive Cross-Coupling. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Zeng H, Li H, Li C, Jiang H, Zhu C. Bond Energy Enabled Amines Distinguishing: Chemo-, Regioselective 1,3-Diamination of (Trifluoromethyl)alkenes with Different Amines by Two C(sp3)-F Bonds Cleavage. Org Chem Front 2022. [DOI: 10.1039/d1qo01849c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The methods to distinguish different amines are rarely investigated. In this manuscript, a bond energy enabled amines distinguishing strategy is reported. With (trifluoromethyl)alkenes as linchpins, a chemo-, regioselective three-component defluorinative...
Collapse
|
21
|
Dong H, Lin Z, Wang C. Nickel-Catalyzed Allylic Defluorinative Cross-Electrophile Coupling with Cycloalkyl Silyl Peroxides as the Alkyl Source. J Org Chem 2021; 87:892-903. [PMID: 34958214 DOI: 10.1021/acs.joc.1c02674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we demonstrate the first successful application of cycloalkyl silyl peroxides (CSP) as an electrophilic coupling partner in the cross-electrophile coupling reaction. Diverse CSP are efficiently cross-coupled with an array of α-trifluoromethyl alkenes under the catalysis of nickel with the assistance of zinc as the reducing agent. This method allows the use of unstrained CSP as the carbonyl-containing alkyl source in the allylic defluorinative reaction, to access a variety of gem-difluoroalkenes bearing a pendent ketone moiety with high functionality tolerance.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhiyang Lin
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, PR China
| |
Collapse
|
22
|
Zhao F, Zhou W, Zuo Z. Recent Advances in the Synthesis of Difluorinated Architectures from Trifluoromethyl Groups. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101234] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Zhao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| | - Wenlong Zhou
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| | - Zuo Zuo
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
| |
Collapse
|
23
|
Steric-switched defluorofunctionalization selectivity: controlled synthesis of monofluoroalkene-masked medium-sized heterocyclic lactams and lactones. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1135-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Claraz A, Allain C, Masson G. Electroreductive Cross-Coupling of Trifluoromethyl Alkenes and Redox Active Esters for the Synthesis of Gem-Difluoroalkenes. Chemistry 2021; 28:e202103337. [PMID: 34761845 DOI: 10.1002/chem.202103337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/23/2022]
Abstract
An electroreductive access to gem-difluoroalkenes has been developed through the decarboxylative/defluorinative coupling of N-hydroxyphtalimides esters and α-trifluoromethyl alkenes. The electrolysis is performed under very simple reaction conditions in an undivided cell using cheap carbon graphite electrodes. This metal-free transformation features broad scope with good to excellent yields. Tertiary, secondary as well as primary alkyl radicals could be easily introduced. α-aminoacids L-aspartic and L-glutamic acid-derived redox active esters were good reactive partners furnishing potentially relevant gem-difluoroalkenes. In addition, it has been demonstrated that our electrosynthetic approach toward the synthesis of gem-difluoroalkenes could use an easily prepared Kratitsky salt as alkyl radical precursor via a deaminative/defluorinative carbofunctionalization of trifluoromethylstyrene.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France
| | - Clémence Allain
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
25
|
Chen YX, Wang ZJ, Xiao JA, Chen K, Xiang HY, Yang H. Visible-Light-Driven Sulfonation of α-Trifluoromethylstyrenes: Access to Densely Functionalized CF 3-Substituted Tertiary Alcohol. Org Lett 2021; 23:6558-6562. [PMID: 34342456 DOI: 10.1021/acs.orglett.1c02365] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reported herein is a visible-light-induced sulfonation of α-trifluoromethylstyrenes with sodium sulfinates, which provides a series of α-trifluoromethyl-β-sulfonyl tertiary alcohols. This new synthetic protocol is enabled by a charge-transfer complex between oxygen and sulfinates, featuring broad substrate scope and scalability. Excellent functional group compatibility and chemoselectivity render this method suitable for sulfonation of pharmaceutically relevant molecules. In the presence of D2O, deuteriotrifluorinated products were also obtained, further demonstrating the flexibility and synthetic potentials of this strategy.
Collapse
Affiliation(s)
- Yi-Xuan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhu-Jun Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, Guangxi, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
26
|
Zhang C, Lin Z, Zhu Y, Wang C. Chromium-Catalyzed Allylic Defluorinative Ketyl Olefin Coupling. J Am Chem Soc 2021; 143:11602-11610. [PMID: 34291644 DOI: 10.1021/jacs.1c04531] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein we report a chromium-catalyzed allylic defluorinative ketyl olefin coupling between aldehydes and α-trifluoromethyl alkenes, which provides novel and efficient access to diverse gem-difluorohomoallylic alcohols. Remarkably, the high chemoselectivity of this reaction enables the conversion of the formyl moiety in the presence of various easily reducible functionalities including ketone, organohalides, aziridine, sulfone, alkyne, and unactivated alkene. The utility of this method is demonstrated by various simple derivatizations of the attached hydroxyl group of the coupling products. The preliminary mechanistic investigations suggest a reaction pathway with a rate-limiting C-C forming step followed by facile β-fluoro elimination.
Collapse
Affiliation(s)
- Chang Zhang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhiyang Lin
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yufei Zhu
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
27
|
Hu QP, Cheng J, Wang Y, Shi J, Wang BQ, Hu P, Zhao KQ, Pan F. Remote Regioselective Radical C-H Functionalization of Unactivated C-H Bonds in Amides: The Synthesis of gem-Difluoroalkenes. Org Lett 2021; 23:4457-4462. [PMID: 33983034 DOI: 10.1021/acs.orglett.1c01385] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The site-selective functionalization of unactivated aliphatic amines is an attractive and challenging synthetic approach. We herein report a general strategy for the remote site-selective functionalization of unactivated C(sp3)-H bonds in amides by photogenerated amidyl radicals to form gem-difluoroalkenes with trifluoromethyl-substituted alkenes. The site selectivity is controlled by a 1,5-hydrogen atom transfer (HAT) process of the amide. This photocatalyzed transformation shows both chemo- and site-selectivity, facilitating the formation of a secondary, tertiary, or quaternary carbon center.
Collapse
Affiliation(s)
- Qu-Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jing Cheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ying Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jie Shi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
28
|
Kumar T, Yang Y, Sghaier S, Zaid Y, Le Goff XF, Rousset E, Massicot F, Harakat D, Martinez A, Taillefer M, Maron L, Behr J, Jaroschik F. Tuning the Regioselective Functionalization of Trifluoromethylated Dienes via Lanthanum‐Mediated Single C−F Bond Activation. Chemistry 2021; 27:4016-4021. [DOI: 10.1002/chem.202005239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Tarun Kumar
- ICGM Univ. Montpellier, CNRS, ENSCM 34090 Montpellier France
- ICMR, UMR 7312 Université de Reims Champagne Ardenne, CNRS 51097 Reims France
| | - Yan Yang
- LPCNO Université de Toulouse, UPS, INSA, CNRS 135 avenue de Rangueil 31077 Toulouse France
| | - Sirine Sghaier
- ICGM Univ. Montpellier, CNRS, ENSCM 34090 Montpellier France
| | - Yassir Zaid
- ICGM Univ. Montpellier, CNRS, ENSCM 34090 Montpellier France
| | - Xavier F. Le Goff
- ICSM Univ. Montpellier, CEA, CNRS, ENSCM 30207 Bagnols-sur-Cèze France
| | - Elodie Rousset
- ICMR, UMR 7312 Université de Reims Champagne Ardenne, CNRS 51097 Reims France
| | - Fabien Massicot
- ICMR, UMR 7312 Université de Reims Champagne Ardenne, CNRS 51097 Reims France
| | - Dominique Harakat
- ICMR, UMR 7312 Université de Reims Champagne Ardenne, CNRS 51097 Reims France
| | - Agathe Martinez
- ICMR, UMR 7312 Université de Reims Champagne Ardenne, CNRS 51097 Reims France
| | - Marc Taillefer
- ICGM Univ. Montpellier, CNRS, ENSCM 34090 Montpellier France
| | - Laurent Maron
- LPCNO Université de Toulouse, UPS, INSA, CNRS 135 avenue de Rangueil 31077 Toulouse France
| | - Jean‐Bernard Behr
- ICMR, UMR 7312 Université de Reims Champagne Ardenne, CNRS 51097 Reims France
| | | |
Collapse
|
29
|
Huang H, Chen J, Jiang Y, Xiao T. One pot synthesis of isocyano-containing, densely functionalised gem-difluoroalkenes from α-trifluoromethyl alkenes, alkyl halides and TosMIC. Org Chem Front 2021. [DOI: 10.1039/d1qo01024g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A base-promoted one-pot, three-component reaction of TosMIC with α-trifluoromethyl alkenes and alkyl halides has been deveolped for the synthesis of isocyano-containing, densely functionalised gem-difluoroalkenes.
Collapse
Affiliation(s)
- Hongtai Huang
- Kunming University of Science & Technology, Kunming 650500, Yunnan, Peoples R China
| | - Junyu Chen
- Kunming University of Science & Technology, Kunming 650500, Yunnan, Peoples R China
| | - Yubo Jiang
- Kunming University of Science & Technology, Kunming 650500, Yunnan, Peoples R China
| | - Tiebo Xiao
- Kunming University of Science & Technology, Kunming 650500, Yunnan, Peoples R China
| |
Collapse
|
30
|
Yan G, Qiu K, Guo M. Recent advance in the C–F bond functionalization of trifluoromethyl-containing compounds. Org Chem Front 2021. [DOI: 10.1039/d1qo00037c] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The C–F bond is the strongest single bond in organic compounds.
Collapse
Affiliation(s)
- Guobing Yan
- College of Jiyang
- Zhejiang A&F University
- Zhuji 311800
- China
- College of Science
| | - Kaiying Qiu
- Department of Chemistry
- Lishui University
- Lishui 323000
- China
| | - Ming Guo
- College of Jiyang
- Zhejiang A&F University
- Zhuji 311800
- China
- College of Science
| |
Collapse
|
31
|
Zeng H, Cai Y, Jiang H, Zhu C. Two C(sp 3)-F Bond Activation in a CF 3 Group: ipso-Defluorinative Amination Triggered 1,3-Diamination of (Trifluoromethyl)alkenes with Indoles, Carbazoles, Pyrroles, and Sulfonamides. Org Lett 2021; 23:66-70. [PMID: 33321040 DOI: 10.1021/acs.orglett.0c03708] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel strategy enabled cleavage of two C(sp3)-F bonds in a CF3 group is reported. Triggered by ipso-defluorinative amination, this 1,3-diamination of (trifluoromethyl)alkenes with indoles, carbazoles, pyrroles, and sulfonamides gave acyclic 1,3-diamine products bearing a monofluoroalkene moiety in high yields with good to excellent Z/E selectivities. Preliminary mechanistic studies enable the isolation of the reaction intermediate and indicate that a unique sequential ipso-/γ-selective defluorinative amination pathway is involved in this transformation.
Collapse
Affiliation(s)
- Hao Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
32
|
Jin Y, Wu J, Lin Z, Lan Y, Wang C. Merger of C–F and C–N Bond Cleavage in Cross-Electrophile Coupling for the Synthesis of gem-Difluoroalkenes. Org Lett 2020; 22:5347-5352. [DOI: 10.1021/acs.orglett.0c01592] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Youxiang Jin
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiaoyang Wu
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhiyang Lin
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yun Lan
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
33
|
Zeng H, Zhu C, Liu C, Cai Y, Chen F, Jiang H. Three component hydroxyletherification and hydroxylazidation of (trifluoromethyl)alkenes: access to α-trifluoromethyl β-heteroatom substituted tertiary alcohols. Chem Commun (Camb) 2020; 56:6241-6244. [DOI: 10.1039/d0cc02550j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The three component hydroxyletherification and hydroxylazidation reactions of (trifluoromethyl)alkenes are reported, providing various useful α-trifluoromethyl β-heteroatom substituted tertiary alcohols in high yields.
Collapse
Affiliation(s)
- Hao Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Fulin Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|