1
|
Pakkir Shah AK, Walter A, Ottosson F, Russo F, Navarro-Diaz M, Boldt J, Kalinski JCJ, Kontou EE, Elofson J, Polyzois A, González-Marín C, Farrell S, Aggerbeck MR, Pruksatrakul T, Chan N, Wang Y, Pöchhacker M, Brungs C, Cámara B, Caraballo-Rodríguez AM, Cumsille A, de Oliveira F, Dührkop K, El Abiead Y, Geibel C, Graves LG, Hansen M, Heuckeroth S, Knoblauch S, Kostenko A, Kuijpers MCM, Mildau K, Papadopoulos Lambidis S, Portal Gomes PW, Schramm T, Steuer-Lodd K, Stincone P, Tayyab S, Vitale GA, Wagner BC, Xing S, Yazzie MT, Zuffa S, de Kruijff M, Beemelmanns C, Link H, Mayer C, van der Hooft JJJ, Damiani T, Pluskal T, Dorrestein P, Stanstrup J, Schmid R, Wang M, Aron A, Ernst M, Petras D. Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data. Nat Protoc 2024:10.1038/s41596-024-01046-3. [PMID: 39304763 DOI: 10.1038/s41596-024-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/02/2024] [Indexed: 09/22/2024]
Abstract
Feature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography-tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices. Here we provide a comprehensive guide for the statistical analysis of FBMN results, focusing on the downstream analysis of the FBMN output table. We explain the data structure and principles of data cleanup and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. All code is shared in the form of Jupyter Notebooks ( https://github.com/Functional-Metabolomics-Lab/FBMN-STATS ). Additionally, the protocol is accompanied by a web application with a graphical user interface ( https://fbmn-statsguide.gnps2.org/ ) to lower the barrier of entry for new users and for educational purposes. Finally, we also show users how to integrate their statistical results into the molecular network using the Cytoscape visualization tool. Throughout the protocol, we use a previously published environmental metabolomics dataset for demonstration purposes. Together, the protocol, code and web application provide a complete guide and toolbox for FBMN data integration, cleanup and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking and can be easily adapted to other mass spectrometry feature detection, annotation and networking tools.
Collapse
Affiliation(s)
- Abzer K Pakkir Shah
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Axel Walter
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Filip Ottosson
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| | - Francesco Russo
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| | - Marcelo Navarro-Diaz
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Judith Boldt
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research, Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Jarmo-Charles J Kalinski
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Eftychia Eva Kontou
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- The Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - James Elofson
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Alexandros Polyzois
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Carolina González-Marín
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Shane Farrell
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
- School of Marine Sciences, Darling Marine Center, University of Maine, Walpole, ME, USA
| | - Marie R Aggerbeck
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Thapanee Pruksatrakul
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Nathan Chan
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Yunshu Wang
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Magdalena Pöchhacker
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | - Corinna Brungs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | - Andres Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernanda de Oliveira
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Kai Dührkop
- Department of Bioinformatics, University of Jena, Jena, Germany
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Christian Geibel
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Lana G Graves
- Department of Environmental Systems Analysis, University of Tübingen, Tübingen, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Steffen Heuckeroth
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Simon Knoblauch
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Anastasiia Kostenko
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Mirte C M Kuijpers
- Department of Ecology, Behavior and Evolution, University of California San Diego, San Diego, CA, USA
| | - Kevin Mildau
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Paulo Wender Portal Gomes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Tilman Schramm
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA
| | - Karoline Steuer-Lodd
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA
| | - Paolo Stincone
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Sibgha Tayyab
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Giovanni Andrea Vitale
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Berenike C Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Shipei Xing
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Marquis T Yazzie
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Martinus de Kruijff
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Christine Beemelmanns
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Hannes Link
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Christoph Mayer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Justin J J van der Hooft
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Tito Damiani
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Pluskal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Jan Stanstrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Robin Schmid
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mingxun Wang
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Allegra Aron
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark.
| | - Daniel Petras
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA.
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany.
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
2
|
Fu Z, Gong X, Hu Z, Wei B, Zhang H. Unveiling biosynthetic potential of an Arctic marine-derived strain Aspergillus sydowii MNP-2. BMC Genomics 2024; 25:603. [PMID: 38886660 PMCID: PMC11181645 DOI: 10.1186/s12864-024-10501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND A growing number of studies have demonstrated that the polar regions have the potential to be a significant repository of microbial resources and a potential source of active ingredients. Genome mining strategy plays a key role in the discovery of bioactive secondary metabolites (SMs) from microorganisms. This work highlighted deciphering the biosynthetic potential of an Arctic marine-derived strain Aspergillus sydowii MNP-2 by a combination of whole genome analysis and antiSMASH as well as feature-based molecular networking (MN) in the Global Natural Products Social Molecular Networking (GNPS). RESULTS In this study, a high-quality whole genome sequence of an Arctic marine strain MNP-2, with a size of 34.9 Mb was successfully obtained. Its total number of genes predicted by BRAKER software was 13,218, and that of non-coding RNAs (rRNA, sRNA, snRNA, and tRNA) predicted by using INFERNAL software was 204. AntiSMASH results indicated that strain MNP-2 harbors 56 biosynthetic gene clusters (BGCs), including 18 NRPS/NRPS-like gene clusters, 10 PKS/PKS-like gene clusters, 8 terpene synthse gene clusters, 5 indole synthase gene clusters, 10 hybrid gene clusters, and 5 fungal-RiPP gene clusters. Metabolic analyses of strain MNP-2 grown on various media using GNPS networking revealed its great potential for the biosynthesis of bioactive SMs containing a variety of heterocyclic and bridge-ring structures. For example, compound G-8 exhibited a potent anti-HIV effect with an IC50 value of 7.2 nM and an EC50 value of 0.9 nM. Compound G-6 had excellent in vitro cytotoxicities against the K562, MCF-7, Hela, DU145, U1975, SGC-7901, A549, MOLT-4, and HL60 cell lines, with IC50 values ranging from 0.10 to 3.3 µM, and showed significant anti-viral (H1N1 and H3N2) activities with IC50 values of 15.9 and 30.0 µM, respectively. CONCLUSIONS These findings definitely improve our knowledge about the molecular biology of genus A. sydowii and would effectively unveil the biosynthetic potential of strain MNP-2 using genomics and metabolomics techniques.
Collapse
Affiliation(s)
- Zhiyang Fu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Xiangzhou Gong
- School of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Zhe Hu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Bin Wei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, China.
| |
Collapse
|
3
|
Zhang D, Wang X, Liu B, Li S, Wang Y, Guo T, Sun Y. New Dipyrroloquinones from a Plant-Derived Endophytic Fungus Talaromyces sp. Molecules 2023; 28:7847. [PMID: 38067576 PMCID: PMC10708468 DOI: 10.3390/molecules28237847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Two new dipyrroloquinones, namely talaroterreusinones A (1) and B (2), together with four known secondary metabolites, terreusinone A (3), penicillixanthone A (4), isorhodoptilometrin (5), and chrysomutanin (6), were isolated from the solid culture of the endophytic fungus Talaromyces sp. by integrating mass spectrometry-based metabolic profiling and a bioassay-guided method. Their planar structures and stereochemistry were elucidated by comprehensive spectroscopic analysis including NMR and MS. The absolute configuration at C-1″ of terreusinone A (1) was established by applying the modified Mosher's method. Compounds 1-6 were evaluated for anti-inflammatory activity and cytotoxicity. As a result, 1-3 inhibited the LPS-stimulated NO production in macrophage RAW264.7 cells, with IC50 values of 20.3, 30.7, and 20.6 µM, respectively. Penicillixanthone A (4) exhibited potent cytotoxic activity against Hep G2 and A549 cell lines, with IC50 values of 117 nM and 212 nM, respectively, and displayed significant antitumour effects in A549 cells by inhibiting the PI3K-Akt-mTOR signalling pathway.
Collapse
Affiliation(s)
- Dandan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| | - Xiaoqing Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| | - Bo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| | - Shuhui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| | - Yanlei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| | - Tao Guo
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Yi Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China; (D.Z.); (X.W.); (B.L.); (S.L.); (Y.W.)
| |
Collapse
|
4
|
Hu Y, Ma S, Pang X, Cong M, Liu Q, Han F, Wang J, Feng W, Liu Y, Wang J. Cytotoxic pyridine alkaloids from a marine-derived fungus Arthrinium arundinis exhibiting apoptosis-inducing activities against small cell lung cancer. PHYTOCHEMISTRY 2023:113765. [PMID: 37330031 DOI: 10.1016/j.phytochem.2023.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Small cell lung cancer (SCLC) is a kind of high-grade neuroendocrine carcinoma, which is characterized by a higher proliferative rate, earlier metastasis and more poor outcomes compared to non-small cell lung cancer (NSCLC). Under the guidance of MS/MS based molecular networking, three undescribed pyridone alkaloids, namely, arthpyrones M-O (1-3), together with two known pyridone derivatives, arthpyrones C (4) and G (5), were isolated from a sponge-derived Arthrinium arundinis. Their structures were determined through extensive spectroscopic analysis, ECD calculations, and X-ray single-crystal diffraction. Arthpyrone M (1) possessed a novel cage structure bearing an ether bridge functionality rarely reported in this class of metabolites. All isolated compounds were evaluated for their cytotoxicities against five cancer cell lines. As a result, compounds 1-5 showed cytotoxicity against some or all of the five cancer cell lines with IC50 values ranging from 0.26 to 6.43 μM. Among them, arthpyrone O (3) not only exhibited potent efficacy against the proliferative activity of SCLC cells and induced apoptosis in vitro, but also significantly inhibited the growth of xenograft tumor based on SCLC cells in vivo, which indicated 4-hydroxy-2-pyridone alkaloids might been revised as privileged scaffolds in drug discovery.
Collapse
Affiliation(s)
- Yiwei Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Shuai Ma
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou, 510006, China; Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Mengjing Cong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Qianqian Liu
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fanghai Han
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Weineng Feng
- Department of Head and Neck/Thoracic Medical Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China; Sanya Institute of Marine Ecology and Engineering, Yazhou Scientific Bay, Sanya, 572000, China.
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China; Sanya Institute of Marine Ecology and Engineering, Yazhou Scientific Bay, Sanya, 572000, China.
| |
Collapse
|
5
|
Hu J, Wang ZX, Li PM, Qian PY, Liu LL. Structural identification of pyridinopyrone compounds with anti-neuroinflammatory activity from streptomyces sulphureus DSM 40104. Front Microbiol 2023; 14:1205118. [PMID: 37333649 PMCID: PMC10268602 DOI: 10.3389/fmicb.2023.1205118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
This study investigated the chemical composition and biosynthesis pathway of compounds produced by Streptomyces sulphureus DSM 40104. With the guild of molecular networking analysis, we isolated and identified six uncommon structural characteristics of compounds, including four newly discovered pyridinopyrones. Based on genomic analysis, we proposed a possible hybrid NRPS-PKS biosynthesis pathway for pyridinopyrones. Notably, this pathway starts with the use of nicotinic acid as the starting unit, which is a unique feature. Compounds 1-3 exhibited moderate anti-neuroinflammatory activity against LPS-induced BV-2 cell inflammation. Our study demonstrates the diversity of polyene pyrone compounds regarding their chemical structure and bioactivity while providing new insights into their biosynthesis pathway. These findings may lead to the development of new treatments for inflammation-related diseases.
Collapse
Affiliation(s)
- Juan Hu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zi-Xuan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Pei-Meng Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Ling-Li Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Yang X, Wu W, Li H, Zhang M, Chu Z, Wang X, Sun P. Natural occurrence, bioactivity, and biosynthesis of triene-ansamycins. Eur J Med Chem 2022; 244:114815. [DOI: 10.1016/j.ejmech.2022.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
|
7
|
Guo R, Li Q, Mi SH, Jia SH, Yao GD, Lin B, Huang XX, Liu YY, Song SJ. Target isolation of cytotoxic diterpenoid esters and orthoesters from Daphne tangutica maxim based on molecular networking. PHYTOCHEMISTRY 2022; 203:113358. [PMID: 35977604 DOI: 10.1016/j.phytochem.2022.113358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/19/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Guiding by LC-MS/MS analysis and the GNPS Molecular Networking, five undescribed daphnane diterpenoids, tanguticanines A-E, and eleven known analogues were discovered from the whole plants of Daphne tangutica Maxim. Their structures and absolute configurations were determined via extensive NMR spectroscopic analysis, ECD calculations, and X-ray diffraction crystallography. Tanguticanine E (5) exhibited promising cytotoxicity against the HepG2 cell line with an IC50 value of 9.93 ± 0.10 μM. Further flow cytometry experiment was performed to detect cell apoptosis, and the results indicated that cytotoxic diterpenoids (tanguticanines B, D and E, altadaphnan C, gniditrin, hirsein A and simplexin) exert their effects through induction of apoptosis.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Si-Hui Mi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shu-He Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yu-Yang Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
8
|
Pang X, Wang P, Liao S, Zhou X, Lin X, Yang B, Tian X, Wang J, Liu Y. Three unusual hybrid sorbicillinoids with anti-inflammatory activities from the deep-sea derived fungus Penicillium sp. SCSIO06868. PHYTOCHEMISTRY 2022; 202:113311. [PMID: 35830939 DOI: 10.1016/j.phytochem.2022.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Under the guidance of MS/MS based molecular networking, bisorbicillchaetones A-C, three undescribed hybrid sorbicillinoids, were isolated from cultures of the deep-sea derived fungus Penicillium sp. SCSIO06868. The planar structures and absolute configurations of these compounds were determined by extensive spectroscopic analyses. Bisorbicillchaetones are the first examples of hybrid sorbicillinoids containing a coniochaetone unit. Bisorbicillchaetones A and B exhibited moderate inhibitory effect on NO production in LPS activated RAW264.7 cells with the IC50 values of 80.3 ± 3.6 μM and 38.4 ± 3.3 μM, respectively, without cytotoxicity observed.
Collapse
Affiliation(s)
- Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Pei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
9
|
Skrzypczak N, Przybylski P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat Prod Rep 2022; 39:1678-1704. [PMID: 35262153 DOI: 10.1039/d2np00004k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2011 to 2021The structural division of ansamycins, including those of atypical cores and different lengths of the ansa chains, is presented. Recently discovered benzenoid and atypical ansamycin scaffolds are presented in relation to their natural source and biosynthetic routes realized in bacteria as well as their muta and semisynthetic modifications influencing biological properties. To better understand the structure-activity relationships among benzenoid ansamycins structural aspects together with mechanisms of action regarding different targets in cells, are discussed. The most promising directions for structural optimizations of benzenoid ansamycins, characterized by predominant anticancer properties, were discussed in view of their potential medical and pharmaceutical applications. The bibliography of the review covers mainly years from 2011 to 2021.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
10
|
Li H, Chen S, Wang J, Zhang M, Wu W, Liu W, Sun P. Ansafurantrienins, Unprecedented Ansatrienin Derivatives Formed via Photocatalytic Intramolecular [3 + 2] Oxidative Cycloaddition. Org Lett 2022; 24:592-596. [PMID: 34981945 DOI: 10.1021/acs.orglett.1c04032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ansafurantrienins A-H, bearing a unique 5/6/8 dihydrofuran-fused benzo[b]azocine chromophore, were isolated from Streptomyces flaveolus. Their structures, especially in the dihydrofuran unit, were unambiguously established by spectroscopic analyses, molecular modeling, and TDDFT/ECD calculations. The ansafurantrienins were proposed to be generated via intramolecular [3 + 2] oxidative cycloaddition, which was achieved by photocatalytic reaction with UV light and oxygen and found to have solvent-dependent stereoselectivity. Ansafurantrienins showed significant antiproliferative effects against pancreatic cancer cells. The results led to a structural revision of strecacansamycins.
Collapse
Affiliation(s)
- Hongji Li
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Shuo Chen
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China.,College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Jinxin Wang
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Mengxue Zhang
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China.,College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, People's Republic of China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Peng Sun
- School of Pharmacy, Second Military Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
11
|
Li SF, Lv TM, Li YL, Yu XQ, Yao GD, Lin B, Huang XX, Song SJ. Vibsanoids A–D, four new subtypes of vibsane diterpenoids with a distinctive tricyclo[8.2.1.0 2,9]tridecane core from Viburnum odoratissimum. Org Chem Front 2022. [DOI: 10.1039/d2qo00674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four highly rearranged tetranorvibsane-type diterpenoids, vibsanoids A–D, with an unprecedented tricyclo[8.2.1.02,9]tridecane skeleton were isolated from Viburnum odoratissimum.
Collapse
Affiliation(s)
- Shi-Fang Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tian-Ming Lv
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ya-Ling Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Qi Yu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
12
|
Krause J. Applications and Restrictions of Integrated Genomic and Metabolomic Screening: An Accelerator for Drug Discovery from Actinomycetes? Molecules 2021; 26:5450. [PMID: 34576921 PMCID: PMC8471533 DOI: 10.3390/molecules26185450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Since the golden age of antibiotics in the 1950s and 1960s actinomycetes have been the most prolific source for bioactive natural products. However, the number of discoveries of new bioactive compounds decreases since decades. New procedures (e.g., activating strategies or innovative fermentation techniques) were developed to enhance the productivity of actinomycetes. Nevertheless, compound identification remains challenging among others due to high rediscovery rates. Rapid and cheap genome sequencing as well as the advent of bioinformatical analysis tools for biosynthetic gene cluster identification in combination with mass spectrometry-based molecular networking facilitated the tedious process of dereplication. In recent years several studies have been dedicated to accessing the biosynthetic potential of Actinomyces species, especially streptomycetes, by using integrated genomic and metabolomic screening in order to boost the discovery rate of new antibiotics. This review aims to present the various possible applications of this approach as well as the newly discovered molecules, covering studies between 2014 and 2021. Finally, the effectiveness of this approach with regard to find new bioactive agents from actinomycetes will be evaluated.
Collapse
Affiliation(s)
- Janina Krause
- Abteilung Biomedizinische Grundlagen 1, Institut für Gesundheitsforschung und Bildung, Universität Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
13
|
He QR, Tang JJ, Liu Y, Chen ZF, Liu YX, Chen H, Li D, Yi ZF, Gao JM. The natural product trienomycin A is a STAT3 pathway inhibitor that exhibits potent in vitro and in vivo efficacy against pancreatic cancer. Br J Pharmacol 2021; 178:2496-2515. [PMID: 33687738 DOI: 10.1111/bph.15435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Pancreatic cancer is an exceptionally fatal disease. However, therapeutic drugs for pancreatic cancer have presented a serious shortage over the past few decades. Signal transducer and activator of transcription-3 (STAT3) is persistently activated in many human cancers where it promotes tumour development and progression. Natural products serve as an inexhaustible source of anticancer drugs. Here, we identified the natural product trienomycin A (TA), an ansamycin antibiotic, as a potential inhibitor of the STAT3 pathway with potent activity against pancreatic cancer. EXPERIMENTAL APPROACH Effects of trienomycin A on transcriptional activity of STAT3 were assessed by the STAT3-luciferase (STAT3-luc) reporter system. In vitro and in vivo inhibitory activity of TA against pancreatic cancer made use of molecular docking, surface plasmon resonance (SPR) assay, MTS assay, colony formation assay, transwell migration/invasion assay, flow cytometric analysis, immunofluorescence staining, quantitative real-time polymerase chain reaction (PCR), western blotting, tumour xenograft model, haematoxylin and eosin (H&E) staining and immunohistochemistry. KEY RESULTS Trienomycin A directly bound to STAT3 and inhibited STAT3 (Tyr705) phosphorylation, thus inhibiting the STAT3 pathway. Trienomycin A also inhibited colony formation, proliferation, migration and invasion of pancreatic cancer cell lines. Trienomycin A also markedly blocked pancreatic tumour growth in vivo. More importantly, trienomycin A did not show obvious toxicity at the effective dose in mice. CONCLUSIONS AND IMPLICATIONS Trienomycin A exerted anti-neoplastic activity by suppressing STAT3 activation in pancreatic cancer. This natural product could be a novel therapeutic candidate for pancreatic cancer.
Collapse
Affiliation(s)
- Qiu-Rui He
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Yao Liu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Zhi-Fan Chen
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Yu-Xi Liu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Huang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Zheng-Fang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| |
Collapse
|