1
|
Cuervo-Prado P, Orozco-López F, Becerra-Rivas C, Leon-Vargas D, Lozano-Oviedo J, Cobo J. Regioselective Synthesis of Cycloalkane-fused Pyrazolo[4,3- e]pyridines through Tandem Reaction of 5-aminopyrazoles, Cyclic Ketones and Electron-rich Olefins. Curr Org Synth 2024; 21:947-956. [PMID: 39044704 DOI: 10.2174/0115701794269765231204064930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 07/25/2024]
Abstract
BACKGROUND Pyrazolopyridines are interesting fused heterocyclic pharmacophores that combine pyrazole and pyridine; two privileged nuclei extensively studied and with a wide range of applications. They can be obtained by a broad variety of synthetic methods among which multicomponent reactions have gained importance, especially from 5-aminopyrazoles and dielectrophilic reagents. However, the search for new approaches more in tune with sustainable chemistry and the use of unconventional heating in three-component synthesis are open and highly relevant study fields. METHODS A novel, practical and efficient three-component synthesis of cycloalkane-fused pyrazolo[ 4,3-e]pyridines was developed through a tandem reaction of 5-aminopyrazoles, cyclic ketones and electron-rich olefins, using microwave induction in perfluorinated solvent and iodine as catalyst. RESULTS The microwave-induced three-component approach applied in this work promoted the construction of 10 new pyrazolopyridines with high speed and excellent control of regioselectivity, favoring the linear product with good yields; where the versatility of electron-rich olefins in iodine-catalyzed cascade heterocyclizations, granted the additional benefit of easy isolation and the possibility to reuse the fluorous phase. CONCLUSION Although pyrazolopyridines have been synthetically explored because of their structural and biological properties, most of the reported synthetic methods use common or even toxic organic solvents and conventional heating or multi-step processes. In contrast, this study applied a multicomponent methodology in a single step by microwave induction and with the versatility provided in this case by the use of perfluorinated solvent, which allowed easy isolation of the final product and recovery of the fluorous phase.
Collapse
Affiliation(s)
- Paola Cuervo-Prado
- Department of Chemistry, Group of Studies on Synthesis and Applications of Heterocyclic Compounds, Universidad Nacional de Colombia, Bogotá, Colombia, AA, 14490
| | - Fabián Orozco-López
- Department of Chemistry, Group of Studies on Synthesis and Applications of Heterocyclic Compounds, Universidad Nacional de Colombia, Bogotá, Colombia, AA, 14490
| | - Christian Becerra-Rivas
- Department of Chemistry, Group of Studies on Synthesis and Applications of Heterocyclic Compounds, Universidad Nacional de Colombia, Bogotá, Colombia, AA, 14490
| | - Diego Leon-Vargas
- Department of Chemistry, Group of Studies on Synthesis and Applications of Heterocyclic Compounds, Universidad Nacional de Colombia, Bogotá, Colombia, AA, 14490
| | - John Lozano-Oviedo
- Department of Chemistry, Group of Studies on Synthesis and Applications of Heterocyclic Compounds, Universidad Nacional de Colombia, Bogotá, Colombia, AA, 14490
| | - Justo Cobo
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, Jaén, 23071, Spain
| |
Collapse
|
2
|
Zhao H, Liu Z, Wei Y, Zhang L, Wang Z, Ren J, Qu X. NIR-II Light Leveraged Dual Drug Synthesis for Orthotopic Combination Therapy. ACS NANO 2022; 16:20353-20363. [PMID: 36398983 DOI: 10.1021/acsnano.2c06314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pd-catalyzed bioorthogonal bond cleavage reactions are widely used and frequently reported. It is circumscribed by low reaction efficiency, which may encumber the therapeutic outcome when applied to physiological environments. Herein, an NIR-II light promoted integrated catalyst (CuS@PDA/Pd) (PDA - polydopamine) is designed to accelerate the reaction efficiency and achieve a dual bioorthogonal reaction for combination therapy. As NIR-II light can penetrate deeply into tissue, the Pd-mediated cleavage reaction can be promoted both in vitro and in vivo by the photothermal properties of CuS, beneficial to orthotopic 4T1 tumor treatment. In addition, CuS also catalyzes the synthesis of active resveratrol analogs by the CuAAC reaction. These simultaneously produced anticancer agents result in enhanced antitumor cytotoxicity in comparison to the single treatments. This is a fascinating study to devise an integrated catalyst boosted by NIR-II light for dual bioorthogonal catalysis, which may provide the impetus for efficient bioorthogonal combination therapy in vivo.
Collapse
Affiliation(s)
- Huisi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Yue Wei
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| |
Collapse
|
3
|
Yan Y, Li M, Liu M, Huang M, Cao L, Li W, Zhang X. Sc(OTf)
3
‐Catalyzed Dearomative [3+2] Annulation of 5‐Aminoisoxazoles with Quinone Imine Ketals or Quinone Monoacetals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yingkun Yan
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Lianyi Cao
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Wenzhe Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
4
|
Li C, Zhang F, Li T, Liu Z, Shen Z. A facile three‐component catalyst‐free strategy: Synthesis of indeno[1,2‐b][1,6]naphthyridine‐1,10(2H)‐dione derivatives in water. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chunmei Li
- Shaoxing University School of Chemistry and Chemical Engineering CHINA
| | - Furen Zhang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process School of Chemistry and Chemical Engineering 508 West Huancheng Road 312000 Shaoxing CHINA
| | - Tianci Li
- Zhejiang University of Technology Zhaohui Campus: Zhejiang University of Technology College of Chemical Engineering CHINA
| | - Zhiyuan Liu
- Zhejiang University of Technology Zhaohui Campus: Zhejiang University of Technology College of Chemical Engineering CHINA
| | - Zhenlu Shen
- Zhejiang University of Technology Zhaohui Campus: Zhejiang University of Technology College of Chemical Engineering CHINA
| |
Collapse
|
5
|
Synthesis, characterization and application of magnetic biochar sulfonic acid as a highly efficient recyclable catalyst for preparation of spiro-pyrazolo[3,4-b]pyridines. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04660-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Chen H, Lu T, Qiao M, Hu J, Li C, Qi C, Zhang F. Efficient domino strategy for synthesis of 3‐substituted 1,5‐dihydro
‐4
H
‐pyrrolo[3,2‐
c
]pyridin‐4‐one derivatives. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Huaqian Chen
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Tao Lu
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Minglong Qiao
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Jiawen Hu
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Chenze Qi
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Furen Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| |
Collapse
|
7
|
Yang X, Li C, Zhang F, Qi C. An efficient domino strategy for synthesis of 3-substituted 4-oxo-4,5-dihydro-1H-pyrrolo[3,2-c]pyridine derivatives in water. Mol Divers 2021; 26:1663-1674. [PMID: 34414516 DOI: 10.1007/s11030-021-10294-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
A strategy for catalyst-free domino reaction of 4-aminopyridin-2(1H)-ones, arylglyoxal hydrates and different 1,3-dicarbonyl compounds in water has been established. The mild and efficient procedure afforded pyrrolo[3,2-c]pyridine derivatives with 76-94% yields after simple crystallization. The present procedure shows promising characteristics, such as readily available starting materials, the use of water as reaction media, simple and efficient one-pot operation, and avoiding the need for any hazardous or expensive catalysts.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Chunmei Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.,College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Furen Zhang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
8
|
Li R, Yao L, Wang YB, Zhu JY, Zhang L, Fu JY, Zhang CB, Zhao L. Divergent Metal-Free [4 + 2] Cascade Reaction of 1-Indanylidenemalononitrile with 3-Benzylidenebenzofuran-2(3 H)-one: Access to Spiro-dihydrofluorene-benzofuranone and Axially Chiral Fluorenylamine-phenol Derivatives. Org Lett 2021; 23:5611-5615. [PMID: 34240601 DOI: 10.1021/acs.orglett.1c01510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient cascade reaction of 1-indanylidenemalononitrile with 3-benzylidenebenzofuran-2(3H)-one divergently promoted by DABCO or chiral organocatalyst was developed under mild reaction conditions, and various spiro-dihydrofluorene-benzofuranones were produced in gratifying results, respectively. It is worth noting that both the spiro and axially chiral products can be obtained by tuning the reaction conditions. The mechanism of the transformation was also studied by quantum chemical calculations.
Collapse
Affiliation(s)
- Ran Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Lei Yao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Bo Wang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jun-Yan Zhu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Lixiong Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ji-Ya Fu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Chuan-Bao Zhang
- School of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450052, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Li C, Zhang F, Shen Z. An efficient domino strategy for synthesis of novel spirocycloalkane fused pyrazolo[3,4-b]pyridine derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Liu H, Yan Y, Zhang J, Liu M, Cheng S, Wang Z, Zhang X. Enantioselective dearomative [3+2] annulation of 5-amino-isoxazoles with quinone monoimines. Chem Commun (Camb) 2020; 56:13591-13594. [DOI: 10.1039/d0cc05807f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enantioselective dearomative [3+2] annulation of 5-amino-isoxazoles with quinone monoimines provided various (bridged) isoxazolines fused dihydrobenzofurans with moderate to good yields in moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Hui Liu
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Yingkun Yan
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Jiayan Zhang
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Min Liu
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Shaobing Cheng
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Zhouyu Wang
- Department of Chemistry
- Xihua University
- China
| | - Xiaomei Zhang
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| |
Collapse
|